In this research the effect of pore size distribution on densification process during sintering of ceramic compacts is studied by assuming a Gaussian distribution of the pore sizes and depending on a mathematical mode...In this research the effect of pore size distribution on densification process during sintering of ceramic compacts is studied by assuming a Gaussian distribution of the pore sizes and depending on a mathematical model that was developed in a previous research in describing the densification process.展开更多
An experimental and numerical investigation on the aeroengine blade/case containment analysis is presented. Blade out containment capability analysis is an essential step in the new aeroengine design, but containment ...An experimental and numerical investigation on the aeroengine blade/case containment analysis is presented. Blade out containment capability analysis is an essential step in the new aeroengine design, but containment tests are time-consuming and incur significant costs; thus, developing a short-period and low-cost numerical method is warranted. Using explicit nonlinear dynamic finite element analysis software, the present study numerically investigated the high-speed impact process for simulated blade containment tests which were carried out on high-speed spin testing facility. A number of simulations were conducted using finite element models with different mesh sizes and different values of both the contact penalty factor and the friction coefficient. Detailed comparisons between the experimental and numerical results reveal that the mesh size and the friction coefficient have a considerable impact on the results produced. It is shown that a finer mesh will predict lower containment capability of the case, which is closer to the test data. A larger value of the friction coefficient also predicts lower containment capability. However, the contact penalty factor has little effect on the simulation results if it is large enough to avoid false penetration.展开更多
Molecular dynamics simulations using embedded atom method (EAM) potential were performed to study nano-void growth and coalescence at grain boundary in face-centered cubic bicrystal copper. Thin-plate specimens subjec...Molecular dynamics simulations using embedded atom method (EAM) potential were performed to study nano-void growth and coalescence at grain boundary in face-centered cubic bicrystal copper. Thin-plate specimens subjected to uniaxial tension strain with one-void and two-void at the centered grain boundary were employed to analyze the effect of specimen size, temperature and applied strain rate on the stress-strain response, incipient yield strength and macroscopic effective Young's modulus. The evolutions of dislocations, twin bands and void shapes under different specimen sizes were also presented. The obtained results show that, regardless of the void numbers, the specimen sizes, temperature, the applied strain rate had significant influence on the void shape evolution, stress-strain curve and incipient yield strength, while negligible effects on the macroscopic effective Young's modulus except for the temperature. Moreover, the voids growth rate along the grain boundary was also found to be associated with the specimen sizes.展开更多
文摘In this research the effect of pore size distribution on densification process during sintering of ceramic compacts is studied by assuming a Gaussian distribution of the pore sizes and depending on a mathematical model that was developed in a previous research in describing the densification process.
基金supported by the Zhejiang Provincial Natural Science Foundation of China (No. Y1090245)the Chinese Aviation Propulsion Technology Development Program (No. APTD-11)
文摘An experimental and numerical investigation on the aeroengine blade/case containment analysis is presented. Blade out containment capability analysis is an essential step in the new aeroengine design, but containment tests are time-consuming and incur significant costs; thus, developing a short-period and low-cost numerical method is warranted. Using explicit nonlinear dynamic finite element analysis software, the present study numerically investigated the high-speed impact process for simulated blade containment tests which were carried out on high-speed spin testing facility. A number of simulations were conducted using finite element models with different mesh sizes and different values of both the contact penalty factor and the friction coefficient. Detailed comparisons between the experimental and numerical results reveal that the mesh size and the friction coefficient have a considerable impact on the results produced. It is shown that a finer mesh will predict lower containment capability of the case, which is closer to the test data. A larger value of the friction coefficient also predicts lower containment capability. However, the contact penalty factor has little effect on the simulation results if it is large enough to avoid false penetration.
基金supported by the Open Foundation of State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology (Grant No. KFJJ11-0Y)the National Basic Research Program of China (Grant No. 2010CB631005)the National Natural Science Foundation of China (Grant Nos. 11172148 and 51071094)
文摘Molecular dynamics simulations using embedded atom method (EAM) potential were performed to study nano-void growth and coalescence at grain boundary in face-centered cubic bicrystal copper. Thin-plate specimens subjected to uniaxial tension strain with one-void and two-void at the centered grain boundary were employed to analyze the effect of specimen size, temperature and applied strain rate on the stress-strain response, incipient yield strength and macroscopic effective Young's modulus. The evolutions of dislocations, twin bands and void shapes under different specimen sizes were also presented. The obtained results show that, regardless of the void numbers, the specimen sizes, temperature, the applied strain rate had significant influence on the void shape evolution, stress-strain curve and incipient yield strength, while negligible effects on the macroscopic effective Young's modulus except for the temperature. Moreover, the voids growth rate along the grain boundary was also found to be associated with the specimen sizes.