期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
改进遗传算法求解TSP问题
1
作者
炎士涛
《河南科技学院学报》
2010年第1期86-89,共4页
遗传算法(GA)是由遗传进化理论指导的随机搜索寻优算法,传统GA的寻优能力与随机搜索能力之间存在着相互制约的关系,所以对地形极其复杂、极无规律的TSP的应用效果并不十分理想.通过利用互换启迪交叉算子加快局部搜索算法的收敛速度,利...
遗传算法(GA)是由遗传进化理论指导的随机搜索寻优算法,传统GA的寻优能力与随机搜索能力之间存在着相互制约的关系,所以对地形极其复杂、极无规律的TSP的应用效果并不十分理想.通过利用互换启迪交叉算子加快局部搜索算法的收敛速度,利用模式增加修补算子防止算法早熟收敛,给出了一种求解TSP问题的新型遗传算法.仿真实验表明该算法是有效的和可行的.
展开更多
关键词
遗传算法
互换启迪交叉
算子
模式增加修补算子
TSP
下载PDF
职称材料
题名
改进遗传算法求解TSP问题
1
作者
炎士涛
机构
河南科技学院
出处
《河南科技学院学报》
2010年第1期86-89,共4页
文摘
遗传算法(GA)是由遗传进化理论指导的随机搜索寻优算法,传统GA的寻优能力与随机搜索能力之间存在着相互制约的关系,所以对地形极其复杂、极无规律的TSP的应用效果并不十分理想.通过利用互换启迪交叉算子加快局部搜索算法的收敛速度,利用模式增加修补算子防止算法早熟收敛,给出了一种求解TSP问题的新型遗传算法.仿真实验表明该算法是有效的和可行的.
关键词
遗传算法
互换启迪交叉
算子
模式增加修补算子
TSP
Keywords
genetic algorithms
swap inspiration crossover operator
increasing pattern patching operator
traveling salesman problem
分类号
TP306.1 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
改进遗传算法求解TSP问题
炎士涛
《河南科技学院学报》
2010
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部