Several potential failure modes generally exist in rock slopes because of the existence of massive structural planes in rock masses. A system reliability analyses method for rock slopes with multiple failure modes bas...Several potential failure modes generally exist in rock slopes because of the existence of massive structural planes in rock masses. A system reliability analyses method for rock slopes with multiple failure modes based on nonlinear Barton-Bandis failure criterion is proposed. The factors of safety associated with the sliding and overturning failure modes are derived, respectively. The validity of this method is verified through a planar rock slope with an inclined slope top and tension crack. Several sensitivity analyses are adopted to study the influences of structural-plane parameters, geometric parameters, anchoring parameters and fracture morphology on the rock slopes system reliability.展开更多
The structural system failure probability(SFP) is a valuable tool for evaluating the global safety level of concrete gravity dams.Traditional methods for estimating the failure probabilities are based on defined mathe...The structural system failure probability(SFP) is a valuable tool for evaluating the global safety level of concrete gravity dams.Traditional methods for estimating the failure probabilities are based on defined mathematical descriptions,namely,limit state functions of failure modes.Several problems are to be solved in the use of traditional methods for gravity dams.One is how to define the limit state function really reflecting the mechanical mechanism of the failure mode;another is how to understand the relationship among failure modes and enable the probability of the whole structure to be determined.Performing SFP analysis for a gravity dam system is a challenging task.This work proposes a novel nonlinear finite-element-based SFP analysis method for gravity dams.Firstly,reasonable nonlinear constitutive modes for dam concrete,concrete/rock interface and rock foundation are respectively introduced according to corresponding mechanical mechanisms.Meanwhile the response surface(RS) method is used to model limit state functions of main failure modes through the Monte Carlo(MC) simulation results of the dam-interface-foundation interaction finite element(FE) analysis.Secondly,a numerical SFP method is studied to compute the probabilities of several failure modes efficiently by simple matrix integration operations.Then,the nonlinear FE-based SFP analysis methodology for gravity dams considering correlated failure modes with the additional sensitivity analysis is proposed.Finally,a comprehensive computational platform for interfacing the proposed method with the open source FE code Code Aster is developed via a freely available MATLAB software tool(FERUM).This methodology is demonstrated by a case study of an existing gravity dam analysis,in which the dominant failure modes are identified,and the corresponding performance functions are established.Then,the dam failure probability of the structural system is obtained by the proposed method considering the correlation relationship of main failure modes on the basis of the mechanical mechanism analysis with the MC-FE simulations.展开更多
Complex slopes are characterized by large numbers of failure modes,cut sets or link sets,or by statistical dependence between the failure modes.For such slopes,a systematic quantitative method,or matrix-based system r...Complex slopes are characterized by large numbers of failure modes,cut sets or link sets,or by statistical dependence between the failure modes.For such slopes,a systematic quantitative method,or matrix-based system reliability method,was described and improved for their reliability analysis.A construction formula of event vector c E was suggested to solve the difficulty of identifying any component E in sample space,and event vector c of system events can be calculated based on it,then the bounds of system failure probability can be obtained with the given probability information.The improved method was illustrated for four copper mine slopes with multiple failure modes,and the bounds of system failure probabilities were calculated by self-compiling program on the platform of the software MATLAB.Comparison in results from matrix-based system reliability method and two generic system methods suggests that identical accuracy could be obtained by all methods if there are only a few failure modes in slope system.Otherwise,the bounds by the Ditlevsen method or Cornell method are expanded obviously with the increase of failure modes and their precision can hardly satisfy the requirement of practical engineering while the results from the proposed method are still accurate enough.展开更多
The aim of this paper is to present works performed in HTC (Heat-Tech Center), Research & Development Centre of Veolia Group located in Warsaw regarding assessment of probability of failure in DHN (district heatin...The aim of this paper is to present works performed in HTC (Heat-Tech Center), Research & Development Centre of Veolia Group located in Warsaw regarding assessment of probability of failure in DHN (district heating network). This work is a part of a project dedicated to develop a software which objective is to increase reliability of DHN. The research methods consisted of three approaches. First, using database of failures which happened in Warsaw DHN and repairing protocols from past 10 years, a statistics approach was applied to perform first analysis. The result was that pipelines with nominal diameter DN (nominal diameter) ≤ 150 had higher failure rate per km, than pipelines with DN 〉 150. The next step of research was to study influence of internal (corrosion caused by heat carrier, quality of materials) and external (stray currents) factor in order to assess its individual influence on failure rate of pipe and explain reasons of differences in failure rate. To end a FMEA (failure mode and'effects analysis) will aim to identify the main failures modes appearing on DHN, to estimate the main causes of these failures and to propose the best solutions regarding the causes, the costs and the means available.展开更多
基金Project(51978666) supported by the National Natural Science Foundation of ChinaProject(2018-123-040) supported by the Guizhou Provincial Department of Transportation Foundation, ChinaProject(2019zzts009) supported by the Fundamental Research Funds for the Central Universities, China。
文摘Several potential failure modes generally exist in rock slopes because of the existence of massive structural planes in rock masses. A system reliability analyses method for rock slopes with multiple failure modes based on nonlinear Barton-Bandis failure criterion is proposed. The factors of safety associated with the sliding and overturning failure modes are derived, respectively. The validity of this method is verified through a planar rock slope with an inclined slope top and tension crack. Several sensitivity analyses are adopted to study the influences of structural-plane parameters, geometric parameters, anchoring parameters and fracture morphology on the rock slopes system reliability.
基金Projects(51409167,51139001,51179066)supported by the National Natural Science Foundation of ChinaProjects(201401022,201501036)supported by the Ministry of Water Resources Public Welfare Industry Research Special Fund,ChinaProjects(GG201532,GG201546)supported by the Scientific and Technological Research for Water Conservancy,Henan Province,China
文摘The structural system failure probability(SFP) is a valuable tool for evaluating the global safety level of concrete gravity dams.Traditional methods for estimating the failure probabilities are based on defined mathematical descriptions,namely,limit state functions of failure modes.Several problems are to be solved in the use of traditional methods for gravity dams.One is how to define the limit state function really reflecting the mechanical mechanism of the failure mode;another is how to understand the relationship among failure modes and enable the probability of the whole structure to be determined.Performing SFP analysis for a gravity dam system is a challenging task.This work proposes a novel nonlinear finite-element-based SFP analysis method for gravity dams.Firstly,reasonable nonlinear constitutive modes for dam concrete,concrete/rock interface and rock foundation are respectively introduced according to corresponding mechanical mechanisms.Meanwhile the response surface(RS) method is used to model limit state functions of main failure modes through the Monte Carlo(MC) simulation results of the dam-interface-foundation interaction finite element(FE) analysis.Secondly,a numerical SFP method is studied to compute the probabilities of several failure modes efficiently by simple matrix integration operations.Then,the nonlinear FE-based SFP analysis methodology for gravity dams considering correlated failure modes with the additional sensitivity analysis is proposed.Finally,a comprehensive computational platform for interfacing the proposed method with the open source FE code Code Aster is developed via a freely available MATLAB software tool(FERUM).This methodology is demonstrated by a case study of an existing gravity dam analysis,in which the dominant failure modes are identified,and the corresponding performance functions are established.Then,the dam failure probability of the structural system is obtained by the proposed method considering the correlation relationship of main failure modes on the basis of the mechanical mechanism analysis with the MC-FE simulations.
基金Project(51078170) supported by the National Natural Science Foundation of ChinaProject(10JDG097) supported by Jiangsu University Talents Funds,China
文摘Complex slopes are characterized by large numbers of failure modes,cut sets or link sets,or by statistical dependence between the failure modes.For such slopes,a systematic quantitative method,or matrix-based system reliability method,was described and improved for their reliability analysis.A construction formula of event vector c E was suggested to solve the difficulty of identifying any component E in sample space,and event vector c of system events can be calculated based on it,then the bounds of system failure probability can be obtained with the given probability information.The improved method was illustrated for four copper mine slopes with multiple failure modes,and the bounds of system failure probabilities were calculated by self-compiling program on the platform of the software MATLAB.Comparison in results from matrix-based system reliability method and two generic system methods suggests that identical accuracy could be obtained by all methods if there are only a few failure modes in slope system.Otherwise,the bounds by the Ditlevsen method or Cornell method are expanded obviously with the increase of failure modes and their precision can hardly satisfy the requirement of practical engineering while the results from the proposed method are still accurate enough.
文摘The aim of this paper is to present works performed in HTC (Heat-Tech Center), Research & Development Centre of Veolia Group located in Warsaw regarding assessment of probability of failure in DHN (district heating network). This work is a part of a project dedicated to develop a software which objective is to increase reliability of DHN. The research methods consisted of three approaches. First, using database of failures which happened in Warsaw DHN and repairing protocols from past 10 years, a statistics approach was applied to perform first analysis. The result was that pipelines with nominal diameter DN (nominal diameter) ≤ 150 had higher failure rate per km, than pipelines with DN 〉 150. The next step of research was to study influence of internal (corrosion caused by heat carrier, quality of materials) and external (stray currents) factor in order to assess its individual influence on failure rate of pipe and explain reasons of differences in failure rate. To end a FMEA (failure mode and'effects analysis) will aim to identify the main failures modes appearing on DHN, to estimate the main causes of these failures and to propose the best solutions regarding the causes, the costs and the means available.