A new method for image segmentation based on pulse neural network is proposed. Every neuron in the network represents one pixel in the image and the network is locally connected. Each group of the neurons that corresp...A new method for image segmentation based on pulse neural network is proposed. Every neuron in the network represents one pixel in the image and the network is locally connected. Each group of the neurons that correspond to each object synchronizes while different groups of the neurons oscillate at different period. Applying this period difference, different objects are divided. In addition to simulation, an analysis of the mechanism of the method is presented in this paper.展开更多
The authors discuss the unbalanced two-way ANOVA model under heteroscedasticity. By taking the generalized approach, the authors derive the generalized p-values for testing the equality of fixed effects and the genera...The authors discuss the unbalanced two-way ANOVA model under heteroscedasticity. By taking the generalized approach, the authors derive the generalized p-values for testing the equality of fixed effects and the generalized confidence regions for these effects. The authors also provide their frequentist properties in large-sample cases. Simulation studies show that the generalized confidence regions have good coverage probabilities.展开更多
文摘A new method for image segmentation based on pulse neural network is proposed. Every neuron in the network represents one pixel in the image and the network is locally connected. Each group of the neurons that correspond to each object synchronizes while different groups of the neurons oscillate at different period. Applying this period difference, different objects are divided. In addition to simulation, an analysis of the mechanism of the method is presented in this paper.
基金This research is supported by the National Natural Science Foundation of China under Grant Nos.10771126 and 10771015.
文摘The authors discuss the unbalanced two-way ANOVA model under heteroscedasticity. By taking the generalized approach, the authors derive the generalized p-values for testing the equality of fixed effects and the generalized confidence regions for these effects. The authors also provide their frequentist properties in large-sample cases. Simulation studies show that the generalized confidence regions have good coverage probabilities.