A numerical ensemble-mean approach was employed to solve a nonlinear barotropic model with chastic basic flows to analyze the nonlinear effects in the formation of the North Atlantic Oscillation (NAO). The nonlinear...A numerical ensemble-mean approach was employed to solve a nonlinear barotropic model with chastic basic flows to analyze the nonlinear effects in the formation of the North Atlantic Oscillation (NAO). The nonlinear response to external forcing was more similar to the NAO mode than the linear response was, indicating the importance of nonlinearity. With increasing external forcing and enhanced low-frequency anomalies, the effect of nonlinearity increased. Therefore, for strong NAO events, nonlinearity should be considered.展开更多
基金supported by the National Basic Research Program of China (973 program) (Grant No. 2010CB950400) the National Natural Science Foundation of China (NSFC) (Grant Nos. 41030961 and 40805022)
文摘A numerical ensemble-mean approach was employed to solve a nonlinear barotropic model with chastic basic flows to analyze the nonlinear effects in the formation of the North Atlantic Oscillation (NAO). The nonlinear response to external forcing was more similar to the NAO mode than the linear response was, indicating the importance of nonlinearity. With increasing external forcing and enhanced low-frequency anomalies, the effect of nonlinearity increased. Therefore, for strong NAO events, nonlinearity should be considered.