Mining association rules from large database is very costly. We develop a parallel algorithm for this task on shared-memory multiprocessor (SMP). Most proposed parallel algorithms for association rules mining have to ...Mining association rules from large database is very costly. We develop a parallel algorithm for this task on shared-memory multiprocessor (SMP). Most proposed parallel algorithms for association rules mining have to scan the database at least two times. In this article, a parallel algorithm Scan Once (SO) has been proposed for SMP, which only scans the database once. And this algorithm is fundamentally different from the known parallel algorithm Count Distribution (CD). It adopts bit matrix to store the database information and gets the support of the frequent itemsets by adopting Vector-And-Operation, which greatly improve the efficiency of generating all frequent itemsets. Empirical evaluation shows that the algorithm outperforms the known one CD algorithm.展开更多
Previous weighted frequent pattern (WFP) mining algorithms are not suitable for data streams for they need multiple database scans. In this paper, we present an efficient algorithm SWFP-Miner to mine weighted freque...Previous weighted frequent pattern (WFP) mining algorithms are not suitable for data streams for they need multiple database scans. In this paper, we present an efficient algorithm SWFP-Miner to mine weighted frequent pattern over data streams. SWFP-Miner is based on sliding window and can discover important frequent pattern from the recent data. A new refined weight definition is proposed to keep the downward closure property, and two pruning strategies are presented to prune the weighted infrequent pattern. Experimental studies are performed to evaluate the effectiveness and efficiency of SWFP-Miner.展开更多
A frequent trajectory patterns mining algorithm is proposed to learn the object activities and classify the trajectories in intelligent visual surveillance system.The distribution patterns of the trajectories were gen...A frequent trajectory patterns mining algorithm is proposed to learn the object activities and classify the trajectories in intelligent visual surveillance system.The distribution patterns of the trajectories were generated by an Apriori based frequent patterns mining algorithm and the trajectories were classified by the frequent trajectory patterns generated.In addition,a fuzzy c-means(FCM)based learning algorithm and a mean shift based clustering procedure were used to construct the representation of trajectories.The algorithm can be further used to describe activities and identify anomalies.The experiments on two real scenes show that the algorithm is effective.展开更多
文摘Mining association rules from large database is very costly. We develop a parallel algorithm for this task on shared-memory multiprocessor (SMP). Most proposed parallel algorithms for association rules mining have to scan the database at least two times. In this article, a parallel algorithm Scan Once (SO) has been proposed for SMP, which only scans the database once. And this algorithm is fundamentally different from the known parallel algorithm Count Distribution (CD). It adopts bit matrix to store the database information and gets the support of the frequent itemsets by adopting Vector-And-Operation, which greatly improve the efficiency of generating all frequent itemsets. Empirical evaluation shows that the algorithm outperforms the known one CD algorithm.
文摘Previous weighted frequent pattern (WFP) mining algorithms are not suitable for data streams for they need multiple database scans. In this paper, we present an efficient algorithm SWFP-Miner to mine weighted frequent pattern over data streams. SWFP-Miner is based on sliding window and can discover important frequent pattern from the recent data. A new refined weight definition is proposed to keep the downward closure property, and two pruning strategies are presented to prune the weighted infrequent pattern. Experimental studies are performed to evaluate the effectiveness and efficiency of SWFP-Miner.
基金National High-Tech Research and Development Plan of China(No.2003AA1Z2130)Science and Technology Project of Zhejiang Province of China(No.2005C1100102)
文摘A frequent trajectory patterns mining algorithm is proposed to learn the object activities and classify the trajectories in intelligent visual surveillance system.The distribution patterns of the trajectories were generated by an Apriori based frequent patterns mining algorithm and the trajectories were classified by the frequent trajectory patterns generated.In addition,a fuzzy c-means(FCM)based learning algorithm and a mean shift based clustering procedure were used to construct the representation of trajectories.The algorithm can be further used to describe activities and identify anomalies.The experiments on two real scenes show that the algorithm is effective.