基于顺次单支路工作模式的变压器式可控电抗器(controllable reactor of transformer type,CRT)具有良好的电压控制能力,但是CRT各控制绕组间耦合严重.在分析CRT解耦工作模式基本原理的基础上,提出基于CRT解耦工作模式的高压长距离输电...基于顺次单支路工作模式的变压器式可控电抗器(controllable reactor of transformer type,CRT)具有良好的电压控制能力,但是CRT各控制绕组间耦合严重.在分析CRT解耦工作模式基本原理的基础上,提出基于CRT解耦工作模式的高压长距离输电线末端电压控制系统,并给出了控制器参数计算公式;采用查表法对工作绕组电流与各控制绕组晶闸管触发角之间的非线性关系进行线性化处理.仿真结果表明,提出的CRT电压控制系统可以实现CRT各控制绕组的解耦,并维持输电线路末端电压稳定.展开更多
The coupler is fundamental for a coupled model to realize complex interactions among component models.This paper focuses on the coupling process of Wave-Circulation(W-C) coupled model which consists of MASNUM(key labo...The coupler is fundamental for a coupled model to realize complex interactions among component models.This paper focuses on the coupling process of Wave-Circulation(W-C) coupled model which consists of MASNUM(key laboratory of marine science and numerical modeling wave model)and POM(Princeton Ocean Model).The current coupling module of this coupled model is based on the inefficient I/O file,which has already become a performance bottleneck especially when the coupled model utilizes a large number of processes.To improve the performance of the W-C model,a flexible coupling module based on the model coupling toolkit(MCT) is designed and implemented to replace the current I/O file coupling module in the coupled model.Empirical studies that we have carried out demonstrate that our online coupling module can dramatically improve the parallel performance of the coupled model.The online coupling module outperforms the I/O file coupling module.When processes increase to 96,the whole process of EXP-C takes only 695.8 seconds,which is only 58.8%of the execution time of EXP-F.Based on our experiments under 2D Parallel Decomposition(2DPD),we suggest setting parallel decomposition strategies automatically to component models in order to achieve high parallel efficiency.展开更多
文摘基于顺次单支路工作模式的变压器式可控电抗器(controllable reactor of transformer type,CRT)具有良好的电压控制能力,但是CRT各控制绕组间耦合严重.在分析CRT解耦工作模式基本原理的基础上,提出基于CRT解耦工作模式的高压长距离输电线末端电压控制系统,并给出了控制器参数计算公式;采用查表法对工作绕组电流与各控制绕组晶闸管触发角之间的非线性关系进行线性化处理.仿真结果表明,提出的CRT电压控制系统可以实现CRT各控制绕组的解耦,并维持输电线路末端电压稳定.
基金Supported by the National High Technology Research and Development Programme(No.2010AA012400,2010AA012302)the National Natural Science Foundation of China(No.61040048)
文摘The coupler is fundamental for a coupled model to realize complex interactions among component models.This paper focuses on the coupling process of Wave-Circulation(W-C) coupled model which consists of MASNUM(key laboratory of marine science and numerical modeling wave model)and POM(Princeton Ocean Model).The current coupling module of this coupled model is based on the inefficient I/O file,which has already become a performance bottleneck especially when the coupled model utilizes a large number of processes.To improve the performance of the W-C model,a flexible coupling module based on the model coupling toolkit(MCT) is designed and implemented to replace the current I/O file coupling module in the coupled model.Empirical studies that we have carried out demonstrate that our online coupling module can dramatically improve the parallel performance of the coupled model.The online coupling module outperforms the I/O file coupling module.When processes increase to 96,the whole process of EXP-C takes only 695.8 seconds,which is only 58.8%of the execution time of EXP-F.Based on our experiments under 2D Parallel Decomposition(2DPD),we suggest setting parallel decomposition strategies automatically to component models in order to achieve high parallel efficiency.