Tensor representation is useful to reduce the overfitting problem in vector-based learning algorithm in pattern recognition.This is mainly because the structure information of objects in pattern analysis is a reasonab...Tensor representation is useful to reduce the overfitting problem in vector-based learning algorithm in pattern recognition.This is mainly because the structure information of objects in pattern analysis is a reasonable constraint to reduce the number of unknown parameters used to model a classifier.In this paper, we generalize the vector-based learning algorithm TWin Support Vector Machine(TWSVM) to the tensor-based method TWin Support Tensor Machines(TWSTM), which accepts general tensors as input.To examine the effectiveness of TWSTM, we implement the TWSTM method for Microcalcification Clusters(MCs) detection.In the tensor subspace domain, the MCs detection procedure is formulated as a supervised learning and classification problem, and TWSTM is used as a classifier to make decision for the presence of MCs or not.A large number of experiments were carried out to evaluate and compare the performance of the proposed MCs detection algorithm.By comparison with TWSVM, the tensor version reduces the overfitting problem.展开更多
Aiming at the topic of electroencephalogram (EEG) pattern recognition in brain computer interface (BCI), a classification method based on probabilistic neural network (PNN) with supervised learning is presented ...Aiming at the topic of electroencephalogram (EEG) pattern recognition in brain computer interface (BCI), a classification method based on probabilistic neural network (PNN) with supervised learning is presented in this paper. It applies the recognition rate of training samples to the learning progress of network parameters. The learning vector quantization is employed to group training samples and the Genetic algorithm (GA) is used for training the network' s smoothing parameters and hidden central vector for detemlining hidden neurons. Utilizing the standard dataset I (a) of BCI Competition 2003 and comparing with other classification methods, the experiment results show that the best performance of pattern recognition Js got in this way, and the classification accuracy can reach to 93.8%, which improves over 5% compared with the best result (88.7 % ) of the competition. This technology provides an effective way to EEG classification in practical system of BCI.展开更多
基金Supported by the National Natural Science Foundation of China (No. 60771068)the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2007F248)
文摘Tensor representation is useful to reduce the overfitting problem in vector-based learning algorithm in pattern recognition.This is mainly because the structure information of objects in pattern analysis is a reasonable constraint to reduce the number of unknown parameters used to model a classifier.In this paper, we generalize the vector-based learning algorithm TWin Support Vector Machine(TWSVM) to the tensor-based method TWin Support Tensor Machines(TWSTM), which accepts general tensors as input.To examine the effectiveness of TWSTM, we implement the TWSTM method for Microcalcification Clusters(MCs) detection.In the tensor subspace domain, the MCs detection procedure is formulated as a supervised learning and classification problem, and TWSTM is used as a classifier to make decision for the presence of MCs or not.A large number of experiments were carried out to evaluate and compare the performance of the proposed MCs detection algorithm.By comparison with TWSVM, the tensor version reduces the overfitting problem.
基金Supported by the National Natural Science Foundation of China (No. 30570485)the Shanghai "Chen Guang" Project (No. 09CG69).
文摘Aiming at the topic of electroencephalogram (EEG) pattern recognition in brain computer interface (BCI), a classification method based on probabilistic neural network (PNN) with supervised learning is presented in this paper. It applies the recognition rate of training samples to the learning progress of network parameters. The learning vector quantization is employed to group training samples and the Genetic algorithm (GA) is used for training the network' s smoothing parameters and hidden central vector for detemlining hidden neurons. Utilizing the standard dataset I (a) of BCI Competition 2003 and comparing with other classification methods, the experiment results show that the best performance of pattern recognition Js got in this way, and the classification accuracy can reach to 93.8%, which improves over 5% compared with the best result (88.7 % ) of the competition. This technology provides an effective way to EEG classification in practical system of BCI.