期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
ZnO纳米多晶颗粒激射模式的特性研究 被引量:1
1
作者 王晓芳 谢平波 +3 位作者 张一帅 赵福利 许宁生 汪河洲 《红外与激光工程》 EI CSCD 北大核心 2006年第z3期22-26,共5页
利用飞秒脉冲激光激发,研究了均匀沉淀法制备获得的 ZnO 纳米多晶颗粒的室温紫外受激发射。在高密度激发功率下,其发射光谱表现为宽的发射背景上一系列的锐窄结构,且两相邻尖锐峰间距基本相同,即激射模式具有等间距性质。改变激光激发强... 利用飞秒脉冲激光激发,研究了均匀沉淀法制备获得的 ZnO 纳米多晶颗粒的室温紫外受激发射。在高密度激发功率下,其发射光谱表现为宽的发射背景上一系列的锐窄结构,且两相邻尖锐峰间距基本相同,即激射模式具有等间距性质。改变激光激发强度,发射谱带红移,但激射模式间距不随激发强度变化而变化:进一步比较三组典型粒径的 ZnO 纳米多晶颗粒样品发射光谱的激射模式,发现模式间距也相同,即激射模式间距与粒径也没有关系,不同于传统的谐振腔理论。 展开更多
关键词 ZnO纳米多晶 受激辐射 激射模式 模式间距
下载PDF
具有模糊聚类功能的双向二维无监督特征提取方法 被引量:13
2
作者 皋军 孙长银 王士同 《自动化学报》 EI CSCD 北大核心 2012年第4期549-562,共14页
依据最大间距判别准则(Maximum margin criterion,MMC)的基本原理,并结合模糊技术和张量理论,提出一种矩阵模式的模糊最大间距判别准则(Matrix model fuzzy maximum margin criterion,MFMMC),并在此基础上形成具有模糊聚类功能的双向二... 依据最大间距判别准则(Maximum margin criterion,MMC)的基本原理,并结合模糊技术和张量理论,提出一种矩阵模式的模糊最大间距判别准则(Matrix model fuzzy maximum margin criterion,MFMMC),并在此基础上形成具有模糊聚类功能的双向二维无监督特征提取方法(Two-directional two-dimensional unsupervised feature extraction method with fuzzy clustering ability,(2D)2UFFCA).该方法不但能直接实现矩阵模式数据的模糊聚类,而且还可以对矩阵模式数据进行双向二维特征提取,实现特征降维.同时我们还从几何的直观含义出发,合理地设定矩阵模式的模糊最大间距判别准则中的调节参数γ,并从理论上证明其合理性.为了提高特征提取的效率,还提出一种能有效计算矩阵模式数据的投影变换矩阵的方法.实验结果表明该方法具有上述优势. 展开更多
关键词 张量模式 双向二维特征提取 矩阵模式的模糊最大间距判别准则 模糊聚类
下载PDF
Revisiting Quantum Mechanical Weirdness From a Bio-psychological Perspective
3
作者 Franz Klaus Jansen 《Journal of Philosophy Study》 2018年第8期343-354,共12页
Quantum mechanics has some weird aspects, which we simply have to accept, according to Tegmark. However, approaching this issue from a bio-psychological perspective allows for an alternative interpretation that avoids... Quantum mechanics has some weird aspects, which we simply have to accept, according to Tegmark. However, approaching this issue from a bio-psychological perspective allows for an alternative interpretation that avoids this supposedly inherent weirdness. Physical laws are established based on repeated observations or measurements, which involve sense organs. Our capacity for memorization and abstract reflection allows us to draw conclusions on physical reality, which can thus be represented with mathematical formalism. Therefore, physical laws are dependent on pure bio-psychological functions. If quantum mechanics is seen in the bio-psychological context, normal mental functions might explain phenomena such as the collapse of the wave function. If events of interest occurred regularly, similar to classical physics, the same pattern of regular events would be anticipated in the future. Conversely, if events that occurred in the past were irregular, like in quantum mechanics, they would also evolve in an irregular manner in the future. Prediction of irregular behavior requires the ability to imagine multiple possibilities in a kind of mental superposition. Only when one of the imagined possibilities is realized, the mental superposition of the future will collapse to one observable behavior occurring in the present. However, in mental representation, similar to classical physical formalism, some aspects of reality can be lost. When time and space coordinates are replaced by calculated time intervals and spatial distances, time periods and spatial lengths become independent of their initial reference frames. Consequently, the concepts of past, present, and future become irrelevant for time intervals. In quantum mechanics, as well as in mental imagination of potentiality, the notions of the unity of one space for one time and the time arrow are also eliminated. This analogy suggests that physical formalism does not correspond to independent physical reality, but rather to mental functions, which allow establishing a mathematical model of extra-mental reality. If quantum mechanics is conceived as mental potentiality for modeling physical reality, the weird aspect of the collapse of superposition disappears and becomes a simple transition from imagined potentiality in mental representation to observed reality, which could explain the measurement problem. 展开更多
关键词 quantum mechanics wave function SUPERPOSITION measurement problem weirdness OBSERVATION REALITY POTENTIALITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部