We investigate the area and entropy spectra of D-dimensional large Schwarzschild black holes. By utilizing the new physical interpretation of quasinormal mode frequency we find that a large Schwarzschild-AdS black hol...We investigate the area and entropy spectra of D-dimensional large Schwarzschild black holes. By utilizing the new physical interpretation of quasinormal mode frequency we find that a large Schwarzschild-AdS black hole has an equally spaced area spectrum and an equidistant entropy spectrum; both are dependent on the spacetime dimension.展开更多
Land cover is one of the most basic input elements of land surface and climate models. Currently, the direct and indirect effects of land cover data on climate and climate change are receiving increasing attentions. I...Land cover is one of the most basic input elements of land surface and climate models. Currently, the direct and indirect effects of land cover data on climate and climate change are receiving increasing attentions. In this study, a high resolution(30 m) global land cover dataset(Globe Land30) produced by Chinese scientists was, for the first time, used in the Beijing Climate Center Climate System Model(BCC_CSM) to assess the influences of land cover dataset on land surface and climate simulations. A two-step strategy was designed to use the Globe Land30 data in the model. First, the Globe Land30 data were merged with other satellite remote sensing and climate datasets to regenerate plant functional type(PFT) data fitted for the BCC_CSM. Second, the up-scaling based on an area-weighted approach was used to aggregate the fine-resolution Globe Land30 land cover type and area percentage with the coarser model grid resolutions globally. The Globe Land30-based and the BCC_CSM-based land cover data had generally consistent spatial distribution features, but there were some differences between them. The simulation results of the different land cover type dataset change experiments showed that effects of the new PFT data were larger than those of the new glaciers and water bodies(lakes and wetlands). The maximum value was attained when dataset of all land cover types were changed. The positive bias of precipitation in the mid-high latitude of the northern hemisphere and the negative bias in the Amazon, as well as the negative bias of air temperature in part of the southern hemisphere, were reduced when the Globe Land30-based data were used in the BCC_CSM atmosphere model. The results suggest that the Globe Land30 data are suitable for use in the BCC_CSM component models and can improve the performance of the land and atmosphere simulations.展开更多
The coexistence of wireless body sensor networks(WBSNs) is a very challenging problem, due to strong interference, which seriously affects energy consumption and spectral reuse. The energy efficiency and spectral effi...The coexistence of wireless body sensor networks(WBSNs) is a very challenging problem, due to strong interference, which seriously affects energy consumption and spectral reuse. The energy efficiency and spectral efficiency are two key performance evaluation metrics for wireless communication networks. In this paper, the fundamental tradeoff between energy efficiency and area spectral efficiency of WBSNs is first investigated under the Poisson point process(PPP) model and Matern hard-core point process(HCPP) model using stochastic geometry. The circuit power consumption is taken into consideration in energy efficiency calculation. The tradeoff judgement coefficient is developed and is shown to serve as a promising complementary measure. In addition, this paper proposes a new nearest neighbour distance power control strategy to improve energy efficiency. We show that there exists an optimal transmit power highly dependant on the density of WBSNs and the nearest neighbour distance. Some important properties are also addressed in the analysis of coexisting WBSNs based on the IEEE 802.15.4 standard, such as the impact of intensity nodes distribution,optimal guard zone, and outage probability. Simulation results show that the proposed power control design can reduce the outage probability and enhance energy efficiency. Energy efficiency and area spectral efficiency of the HCPP model are better than those of the PPP model. In addition, the optimal density of WBSNs coexistence is obtained.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.10275030Cuiying Project of Lanzhou University under Grant No.225000-582404
文摘We investigate the area and entropy spectra of D-dimensional large Schwarzschild black holes. By utilizing the new physical interpretation of quasinormal mode frequency we find that a large Schwarzschild-AdS black hole has an equally spaced area spectrum and an equidistant entropy spectrum; both are dependent on the spacetime dimension.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2009AA122005)the Public Welfare Meteorology Research Project of China (Grant Nos. 201506023, 201306048)the National Natural Science Foundation of China (Grant Nos. 41275076, 40905046)
文摘Land cover is one of the most basic input elements of land surface and climate models. Currently, the direct and indirect effects of land cover data on climate and climate change are receiving increasing attentions. In this study, a high resolution(30 m) global land cover dataset(Globe Land30) produced by Chinese scientists was, for the first time, used in the Beijing Climate Center Climate System Model(BCC_CSM) to assess the influences of land cover dataset on land surface and climate simulations. A two-step strategy was designed to use the Globe Land30 data in the model. First, the Globe Land30 data were merged with other satellite remote sensing and climate datasets to regenerate plant functional type(PFT) data fitted for the BCC_CSM. Second, the up-scaling based on an area-weighted approach was used to aggregate the fine-resolution Globe Land30 land cover type and area percentage with the coarser model grid resolutions globally. The Globe Land30-based and the BCC_CSM-based land cover data had generally consistent spatial distribution features, but there were some differences between them. The simulation results of the different land cover type dataset change experiments showed that effects of the new PFT data were larger than those of the new glaciers and water bodies(lakes and wetlands). The maximum value was attained when dataset of all land cover types were changed. The positive bias of precipitation in the mid-high latitude of the northern hemisphere and the negative bias in the Amazon, as well as the negative bias of air temperature in part of the southern hemisphere, were reduced when the Globe Land30-based data were used in the BCC_CSM atmosphere model. The results suggest that the Globe Land30 data are suitable for use in the BCC_CSM component models and can improve the performance of the land and atmosphere simulations.
基金supported by EPSRC TOUCAN Project (Grant No. EP/L020009/1)EU FP7 QUICK Project (Grant No. PIRSES-GA-2013-612652)+3 种基金EU H2020 ITN 5G Wireless Project (Grant No. 641985)National Natural Science Foundation of China (Grant Nos. 61210002, 61401256)MOST 863 Project in 5G (Grant No. 2014AA01A701)International S&T Cooperation Program of China (Grant No. 2014DFA11640)
文摘The coexistence of wireless body sensor networks(WBSNs) is a very challenging problem, due to strong interference, which seriously affects energy consumption and spectral reuse. The energy efficiency and spectral efficiency are two key performance evaluation metrics for wireless communication networks. In this paper, the fundamental tradeoff between energy efficiency and area spectral efficiency of WBSNs is first investigated under the Poisson point process(PPP) model and Matern hard-core point process(HCPP) model using stochastic geometry. The circuit power consumption is taken into consideration in energy efficiency calculation. The tradeoff judgement coefficient is developed and is shown to serve as a promising complementary measure. In addition, this paper proposes a new nearest neighbour distance power control strategy to improve energy efficiency. We show that there exists an optimal transmit power highly dependant on the density of WBSNs and the nearest neighbour distance. Some important properties are also addressed in the analysis of coexisting WBSNs based on the IEEE 802.15.4 standard, such as the impact of intensity nodes distribution,optimal guard zone, and outage probability. Simulation results show that the proposed power control design can reduce the outage probability and enhance energy efficiency. Energy efficiency and area spectral efficiency of the HCPP model are better than those of the PPP model. In addition, the optimal density of WBSNs coexistence is obtained.