选取一个应变响应测点作为参考点,定义了响应应变功率谱密度传递比(Strain Power Spectrum Density Transmissibility,SPSDT),从理论上证明了SPSDT在系统的极点处为应变振型系数之比。利用这一性质,选取一系列不同的参考点构造响应应变...选取一个应变响应测点作为参考点,定义了响应应变功率谱密度传递比(Strain Power Spectrum Density Transmissibility,SPSDT),从理论上证明了SPSDT在系统的极点处为应变振型系数之比。利用这一性质,选取一系列不同的参考点构造响应应变功率谱密度传递比矩阵,在系统的极点处对该矩阵进行奇异值分解,分解所得左奇异矩阵的第一列向量即为应变振型,从而实现结构工作应变模态参数的识别。与传统的工作模态分析方法相比,SPSDT方法不需要对激励做白噪声假定,不需要多种激励类型,仅在一种激励下即可识别出结构的工作应变模态参数。通过数值模拟算例和实验室模型试验验证了所提出方法的有效性,并与传统的频域分解法和随机子空间识别方法进行了比较,验证了所提出方法是有效的。最后分析了采样时长对识别结果的影响,结果表明该方法仅用1min时长数据即可达到稳定的识别精度,具有较好的鲁棒性。展开更多
In order to investigate the damage and deformation mechanism of large scale steel fixed-roof oil-storage tanks under the combustible gas explosion, a series of explosion experiments of scaled models are conducted. Th...In order to investigate the damage and deformation mechanism of large scale steel fixed-roof oil-storage tanks under the combustible gas explosion, a series of explosion experiments of scaled models are conducted. The l: 25 scaled numerical models of oil-storage tanks with a capacity of 5 000 m3 are also set up by ANSYS/LS-DYNA software, and their damage processes under the blast impact are numerically simulated. Both the experimental results and the numerical simulations show that the blast loading curve displays a pressure jump instantaneously at the moment of contact with the experimental models, and the overpressure peaks at the stagnation area of the outer surface on the blast side. The yield range first appears at the stagnation area and then propagates to the neighboring parts, and the irregular plastic hinge circle obviously appears around the deformation area, which results in the concaved buckling of the tank inner surface. During the whole process, the inner liquid not only impacts on the structures, but also absorbs and consumes part of the blast energy.展开更多
Uniaxial tensile testing at strain rates ranging from 10-3 to 10-1 s-1 was carried out to study the rate-dependent me-chanical behavior for poly(ethylene terephthalate) (PET) used in the packaging industry. The experi...Uniaxial tensile testing at strain rates ranging from 10-3 to 10-1 s-1 was carried out to study the rate-dependent me-chanical behavior for poly(ethylene terephthalate) (PET) used in the packaging industry. The experimental results show that a rate-dependent plastic behavior exists for PET material. The value of the yield strength was found to increase with the increasing strain rate. A new constitutive model based on the improved Cowper-Symonds rate-dependent constitutive model is proposed to describe the mechanical behavior of PET material in the strain rate ranging from 10-3 to 10-1 s-1, providing more accurate material data for the subsequent simulation analysis of drop test and dynamic buckling. The predictions obtained using the proposed model are compared with experimental results of the improved Cowper-Symonds model. The simulating results of the proposed model agree well with the experimental data. For a low strain rate, the predictions of this model are more precise than those obtained using the improved Cowper-Symonds model. This confirms that the new constitutive model is suitable for describing the me-chanical behavior of PET material at a low strain rate and modeling impact problem.展开更多
文摘选取一个应变响应测点作为参考点,定义了响应应变功率谱密度传递比(Strain Power Spectrum Density Transmissibility,SPSDT),从理论上证明了SPSDT在系统的极点处为应变振型系数之比。利用这一性质,选取一系列不同的参考点构造响应应变功率谱密度传递比矩阵,在系统的极点处对该矩阵进行奇异值分解,分解所得左奇异矩阵的第一列向量即为应变振型,从而实现结构工作应变模态参数的识别。与传统的工作模态分析方法相比,SPSDT方法不需要对激励做白噪声假定,不需要多种激励类型,仅在一种激励下即可识别出结构的工作应变模态参数。通过数值模拟算例和实验室模型试验验证了所提出方法的有效性,并与传统的频域分解法和随机子空间识别方法进行了比较,验证了所提出方法是有效的。最后分析了采样时长对识别结果的影响,结果表明该方法仅用1min时长数据即可达到稳定的识别精度,具有较好的鲁棒性。
基金The National Natural Science Foundation of China(No. 51078115)
文摘In order to investigate the damage and deformation mechanism of large scale steel fixed-roof oil-storage tanks under the combustible gas explosion, a series of explosion experiments of scaled models are conducted. The l: 25 scaled numerical models of oil-storage tanks with a capacity of 5 000 m3 are also set up by ANSYS/LS-DYNA software, and their damage processes under the blast impact are numerically simulated. Both the experimental results and the numerical simulations show that the blast loading curve displays a pressure jump instantaneously at the moment of contact with the experimental models, and the overpressure peaks at the stagnation area of the outer surface on the blast side. The yield range first appears at the stagnation area and then propagates to the neighboring parts, and the irregular plastic hinge circle obviously appears around the deformation area, which results in the concaved buckling of the tank inner surface. During the whole process, the inner liquid not only impacts on the structures, but also absorbs and consumes part of the blast energy.
基金Project (No 2008C11005) supported by the Key Science and Technology Program of Zhejiang Province, China
文摘Uniaxial tensile testing at strain rates ranging from 10-3 to 10-1 s-1 was carried out to study the rate-dependent me-chanical behavior for poly(ethylene terephthalate) (PET) used in the packaging industry. The experimental results show that a rate-dependent plastic behavior exists for PET material. The value of the yield strength was found to increase with the increasing strain rate. A new constitutive model based on the improved Cowper-Symonds rate-dependent constitutive model is proposed to describe the mechanical behavior of PET material in the strain rate ranging from 10-3 to 10-1 s-1, providing more accurate material data for the subsequent simulation analysis of drop test and dynamic buckling. The predictions obtained using the proposed model are compared with experimental results of the improved Cowper-Symonds model. The simulating results of the proposed model agree well with the experimental data. For a low strain rate, the predictions of this model are more precise than those obtained using the improved Cowper-Symonds model. This confirms that the new constitutive model is suitable for describing the me-chanical behavior of PET material at a low strain rate and modeling impact problem.