Mesoscopic characteristics of a clayey soil specimen subjected to macroscopic loading are examined using a medi- cal-use computerized tomography (CT) instrument. Disturbed state concept (DSC) theory is based on the ut...Mesoscopic characteristics of a clayey soil specimen subjected to macroscopic loading are examined using a medi- cal-use computerized tomography (CT) instrument. Disturbed state concept (DSC) theory is based on the utilization of the hard- ening model. DSC indirectly describes material behavior by claiming that the actual response of the material is expressed in terms of the relative intact (RI) response and the fully adjusted (FA) response. The occurrence of mesoscopic structural changes of material has similarities with the occurrence of a macroscopic response of the material under loadings. In general, the relative changing value of a softening material is three to five times more than that of a hardening material. Whether special zones exist or not in a specimen cross section does not affect the following conclusion: hardening material and softening material show me- chanical differences with CT statistical indices values prominently changing, and the change is related to the superposing of a disturbance factor. A new disturbance factor evolution function is proposed. Thus, mesoscopic statistical indices are introduced to describe macroscopic behavior through the new evolution function. An application of the new evolution function proves the effectiveness of the amalgamation of a macroscopic and a mesoscopic experimental phenomenon measurement methods.展开更多
The bending characteristics of dual-hole polarization maintaining photonic crystal fiber(PM-PCF) are demonstrated in this paper. The modal interference is induced by the LP_(01) mode and LP_(11) mode propagating in a ...The bending characteristics of dual-hole polarization maintaining photonic crystal fiber(PM-PCF) are demonstrated in this paper. The modal interference is induced by the LP_(01) mode and LP_(11) mode propagating in a single PM-PCF with the same polarization direction. Simulation results demonstrate that the bending radius induces the phase difference between LP_(01) mode and LP_(11) mode, which leads to the change of light interference intensity on the fiber output facet. The relationship between bending radius and normalized interference intensity with three different bending angles is discussed, where the bending angle is defined as the angle between hole axis and the x axis. The bending sensitivity is obtained to be about-188.78/m around the bending radius of 1.5 cm with the bending angle of 90°. The bending characteristics can contribute for online bending detection in widespread areas.展开更多
文摘Mesoscopic characteristics of a clayey soil specimen subjected to macroscopic loading are examined using a medi- cal-use computerized tomography (CT) instrument. Disturbed state concept (DSC) theory is based on the utilization of the hard- ening model. DSC indirectly describes material behavior by claiming that the actual response of the material is expressed in terms of the relative intact (RI) response and the fully adjusted (FA) response. The occurrence of mesoscopic structural changes of material has similarities with the occurrence of a macroscopic response of the material under loadings. In general, the relative changing value of a softening material is three to five times more than that of a hardening material. Whether special zones exist or not in a specimen cross section does not affect the following conclusion: hardening material and softening material show me- chanical differences with CT statistical indices values prominently changing, and the change is related to the superposing of a disturbance factor. A new disturbance factor evolution function is proposed. Thus, mesoscopic statistical indices are introduced to describe macroscopic behavior through the new evolution function. An application of the new evolution function proves the effectiveness of the amalgamation of a macroscopic and a mesoscopic experimental phenomenon measurement methods.
基金supported by the National Natural Science Foundation of China(No.61475133)the Hebei Provincial Natural Science Foundation(No.F2015203270)+3 种基金the Yanshan University Doctor Foundation(No.B872)the Yanshan University Youth Foundation(No.14LGB015)the College Youth Talent Project of Hebei Province(No.BJ2014057)the Hebei Educational Committee Natural Science Youth Fund(No.QN2014034)
文摘The bending characteristics of dual-hole polarization maintaining photonic crystal fiber(PM-PCF) are demonstrated in this paper. The modal interference is induced by the LP_(01) mode and LP_(11) mode propagating in a single PM-PCF with the same polarization direction. Simulation results demonstrate that the bending radius induces the phase difference between LP_(01) mode and LP_(11) mode, which leads to the change of light interference intensity on the fiber output facet. The relationship between bending radius and normalized interference intensity with three different bending angles is discussed, where the bending angle is defined as the angle between hole axis and the x axis. The bending sensitivity is obtained to be about-188.78/m around the bending radius of 1.5 cm with the bending angle of 90°. The bending characteristics can contribute for online bending detection in widespread areas.