An orthogonal test was conducted to investigate the influence of technical parameters of squeeze casting on the strength and ductility of AISigCu3 alloys. The experimental results showed that when the forming pressure...An orthogonal test was conducted to investigate the influence of technical parameters of squeeze casting on the strength and ductility of AISigCu3 alloys. The experimental results showed that when the forming pressure was higher than 65 MPa, the strength (ab) of A1Si9Cu3 alloys decreased with the forming pressure and pouring temperature increasing, whereas ab increased with the increase of filling velocity and mould preheating temperature. The ductility (6) by alloy was improved by increasing the forming pressure and filling velocity, but decreased with pouring temperature increasing. When the mould preheating temperature increased, the ductility increased first, and then decreased. Under the optimized parameters of pouring temperature 730 ℃, forming pressure 75 MPa, filling velocity 0.50 m/s, and mould preheating temperature 220 ℃, the tensile strength, elongation, and hardness of A1Si9Cu3 alloys obtained in squeeze casting were improved by 16.7%, 9.1%, and 10.1%, respectively, as compared with those of sand castings.展开更多
This study investigated how the mode in which the reading-writing integrated continuation task was conducted modulates the effects of second language(L2) syntactic alignment, through the English motion event construct...This study investigated how the mode in which the reading-writing integrated continuation task was conducted modulates the effects of second language(L2) syntactic alignment, through the English motion event construction with manner verbs. Ninety Chinese students were assigned to either of the two experimental groups or a control group, and they all experienced a pretest, an alignment phase and a posttest. In the alignment phase, the two experimental groups completed a reading-writing integrated continuation task but in different modes. For the multi-turn mode,participants reconstructed a picture story by continuing the episodes extracted from the story with one episode presented and continued at a time;for the single-turn mode, the first half of the same picture story was presented as a chunk, and then participants read and continued it. Results show that L2 learners aligned with the target structure in completing the story, and the alignment effect was retained in the posttest conducted after a delay of two weeks. Moreover, syntactic alignment was modulated by task mode with the multi-turn group exhibiting stronger immediate and longterm alignment effects. We conclude that the continuation task is a fruitful context for L2 structural alignment, and the magnitude of alignment effect hinges on interactive intensity.展开更多
In this paper,we study the interactive relationship between the agglomeration of urban elements and the evolution of eco-environmental pressure.We build an index system for evaluating the agglomeration of urban elemen...In this paper,we study the interactive relationship between the agglomeration of urban elements and the evolution of eco-environmental pressure.We build an index system for evaluating the agglomeration of urban elements and eco-environmental pressure.Using the entropy method and response intensity model,we analyze how urban elements agglomeration influenced eco-environmental pressure in Changchun from 1990 to 2012,eliciting the changing features and influential factors.Ultimately,we conclude there is a significant interactive relationship between the agglomeration of urban elements and the evolution of eco-environmental pressure in Changchun.This is inferred from the degree of this agglomeration in Changchun having increased since 1990,with the degree of eco-environmental pressure first decreasing and then increasing.Alongside this,the impact of urban elements agglomeration on eco-environmental pressure has changed from negative to positive.The main reasons behind this shift are arguably the rapid growth of urban investment and ongoing urbanization.展开更多
To investigate the influence of microwave heating on the dynamic behavior and failure mechanisms of rock,dynamic compression tests were conducted on microwave-irradiated sandstone specimens using a modified split Hopk...To investigate the influence of microwave heating on the dynamic behavior and failure mechanisms of rock,dynamic compression tests were conducted on microwave-irradiated sandstone specimens using a modified split Hopkinson pressure bar(SHPB)system.Experimental results show that microwave radiation can effectively weaken the compressive strength of sandstone.Rock specimens show three different failure modes under impact load:tensile failure,tensile−shear composite failure and compressive−shear failure.The dynamic Poisson’s ratio,calculated using the measured P-and S-wave velocities,is introduced to describe the deformation characteristics of sandstone.With the increase in microwave power and heating time,the Poisson’s ratio declines first and then increases slightly,and the turning point occurs at 244.6℃.Moreover,the microstructural characteristics reveal that microwave radiation produces dehydration,pore expansion,and cracking of the rock.The damage mechanisms caused by microwave radiation are discussed based on thermal stress and steam pressure inside the rock,which provides a reasonable explanation for the experimental results.展开更多
A three-dimensional transient numerical simulation was conducted to study the pressure fluctuations in low-specific-speed centrifugal pumps. The characteristics of the inner flow were investigated using the SST k-ω t...A three-dimensional transient numerical simulation was conducted to study the pressure fluctuations in low-specific-speed centrifugal pumps. The characteristics of the inner flow were investigated using the SST k-ω turbulence model. The distributions of pressure fluctuations in the impeller and the volute were recorded, and the pressure fluctuation intensity was analyzed comprehensively, at the design condition, using statistical methods. The results show that the pressure fluctuation intensity increases along the impeller streamline from the leading edge to the trailing edge. In the impeller passage, the intensity near the shroud is much higher than that near the hub at thc inlet. However, the intensity at the middle passage is almost equal to the intensity at the outlet. The pressure fluctuation intensity is the highest at the trailing edge on the pressure side and near the tongue because of the rotor-stator interaction. The distribution of pressure fluctuation intensity is symmetrical in the axial cross sections of the volute channel. However, this intensity decreases with increasing radial distance. Hence, the pressure fluctuation intensity can be reduced by modifying the geometry of the leading edge in the impeller and the tongue in the volute.展开更多
Six coupled general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are em-ployed for examining the full evolution of the North Pacific mode water and Subtropical Countercurrent (STCC...Six coupled general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are em-ployed for examining the full evolution of the North Pacific mode water and Subtropical Countercurrent (STCC) under global warming over 400 years following the Representative Concentration Pathways (RCP) 4.5. The mode water and STCC first show a sharp weakening trend when the radiative forcing increases, but then reverse to a slow strengthening trend of smaller magnitude after the radiative forcing is stablized. As the radiative forcing increases during the 21st century, the ocean warming is surface-intensified and decreases with depth, strengthening the upper ocean's stratification and becoming unfavorable for the mode water formation. Moving southward in the subtropical gyre, the shrinking mode water decelerates the STCC to the south. After the radiative forcing is stabilized in the 2070s, the subsequent warming is greater at the subsurface than at the sea surface, destabilizing the upper ocean and becoming favorable for the mode water formation. As a result, the mode water and STCC recover gradually after the radiative forc-ing is stabilized.展开更多
A new wing crack model subjected to hydraulic pressure and far-field stresses was proposed considering the effect of hydraulic pressure in wing crack and the connected part of the main crack on the stress intensity fa...A new wing crack model subjected to hydraulic pressure and far-field stresses was proposed considering the effect of hydraulic pressure in wing crack and the connected part of the main crack on the stress intensity factor at the wing crack tip. With the equivalent crack length Ieq of the wing crack introduced, the stress intensity factor Kl at the wing crack tip was as- sumed to the sum of two terms: on one hand a component K1^(1) for a single isolated straight wing crack of length 21, and subjected to hydraulic pressure in the wing crack and far-field stresses; on the other hand a component K1(2) due to the effective shear stress induced by the presence of the equivalent main crack. The lateral tensile stress and hydraulic high pressure are the key factors that induce crack propagation unsteadily. The new wing crack theoretical model proposed can supply references for the study on hydraulic fracture in fractured masses, hydraulic fracturing in rock masses.展开更多
Experimental tests show that static pre-loading has a significant effect on the dynamic strength of concrete.Based on meso-scale particle element model,numerical simulations of dynamic bending tests with pre-loading a...Experimental tests show that static pre-loading has a significant effect on the dynamic strength of concrete.Based on meso-scale particle element model,numerical simulations of dynamic bending tests with pre-loading are performed.Complete stress–strain relationships are then obtained.Significant increase in dynamic strength is found when the pre-loadings are imposed within the elastic limit of concrete.However,when the imposition of pre-loadings reaches the plastic or softening range,dynamic strengths may gradually decrease along with the increase in pre-loadings.The distribution of energy components and the failure modes are discussed to explain the mechanisms of the phenomena.展开更多
The bending characteristics of dual-hole polarization maintaining photonic crystal fiber(PM-PCF) are demonstrated in this paper. The modal interference is induced by the LP_(01) mode and LP_(11) mode propagating in a ...The bending characteristics of dual-hole polarization maintaining photonic crystal fiber(PM-PCF) are demonstrated in this paper. The modal interference is induced by the LP_(01) mode and LP_(11) mode propagating in a single PM-PCF with the same polarization direction. Simulation results demonstrate that the bending radius induces the phase difference between LP_(01) mode and LP_(11) mode, which leads to the change of light interference intensity on the fiber output facet. The relationship between bending radius and normalized interference intensity with three different bending angles is discussed, where the bending angle is defined as the angle between hole axis and the x axis. The bending sensitivity is obtained to be about-188.78/m around the bending radius of 1.5 cm with the bending angle of 90°. The bending characteristics can contribute for online bending detection in widespread areas.展开更多
Stationary entanglement in a four-mode optomechanical system,especially under room-temperature,is discussed.In this scheme,when the coupling strengths between the two target modes and the mechanical resonator are equa...Stationary entanglement in a four-mode optomechanical system,especially under room-temperature,is discussed.In this scheme,when the coupling strengths between the two target modes and the mechanical resonator are equal,the results cannot be explained by the Bogoliubov-mode-based scheme.This is related to the idea of quantummechanics-free subspace,which plays an important role when the thermal noise of the mechanical modes is considered.Significantly prominent steady-state entanglement can be available under room-temperature.展开更多
基金Project(11C26211304055) supported by Small to Medium Enterprise Innovation Fund
文摘An orthogonal test was conducted to investigate the influence of technical parameters of squeeze casting on the strength and ductility of AISigCu3 alloys. The experimental results showed that when the forming pressure was higher than 65 MPa, the strength (ab) of A1Si9Cu3 alloys decreased with the forming pressure and pouring temperature increasing, whereas ab increased with the increase of filling velocity and mould preheating temperature. The ductility (6) by alloy was improved by increasing the forming pressure and filling velocity, but decreased with pouring temperature increasing. When the mould preheating temperature increased, the ductility increased first, and then decreased. Under the optimized parameters of pouring temperature 730 ℃, forming pressure 75 MPa, filling velocity 0.50 m/s, and mould preheating temperature 220 ℃, the tensile strength, elongation, and hardness of A1Si9Cu3 alloys obtained in squeeze casting were improved by 16.7%, 9.1%, and 10.1%, respectively, as compared with those of sand castings.
文摘This study investigated how the mode in which the reading-writing integrated continuation task was conducted modulates the effects of second language(L2) syntactic alignment, through the English motion event construction with manner verbs. Ninety Chinese students were assigned to either of the two experimental groups or a control group, and they all experienced a pretest, an alignment phase and a posttest. In the alignment phase, the two experimental groups completed a reading-writing integrated continuation task but in different modes. For the multi-turn mode,participants reconstructed a picture story by continuing the episodes extracted from the story with one episode presented and continued at a time;for the single-turn mode, the first half of the same picture story was presented as a chunk, and then participants read and continued it. Results show that L2 learners aligned with the target structure in completing the story, and the alignment effect was retained in the posttest conducted after a delay of two weeks. Moreover, syntactic alignment was modulated by task mode with the multi-turn group exhibiting stronger immediate and longterm alignment effects. We conclude that the continuation task is a fruitful context for L2 structural alignment, and the magnitude of alignment effect hinges on interactive intensity.
基金Under the auspices of Education Ministry for Development of Liberal Arts and Social Science(No.14YJA790035)
文摘In this paper,we study the interactive relationship between the agglomeration of urban elements and the evolution of eco-environmental pressure.We build an index system for evaluating the agglomeration of urban elements and eco-environmental pressure.Using the entropy method and response intensity model,we analyze how urban elements agglomeration influenced eco-environmental pressure in Changchun from 1990 to 2012,eliciting the changing features and influential factors.Ultimately,we conclude there is a significant interactive relationship between the agglomeration of urban elements and the evolution of eco-environmental pressure in Changchun.This is inferred from the degree of this agglomeration in Changchun having increased since 1990,with the degree of eco-environmental pressure first decreasing and then increasing.Alongside this,the impact of urban elements agglomeration on eco-environmental pressure has changed from negative to positive.The main reasons behind this shift are arguably the rapid growth of urban investment and ongoing urbanization.
基金the National Natural Science Foundation of China(Nos.41972283,11972378)the National Key Scientific Instrument and Equipment Development,China(No.51927808)the Hunan Provincial Innovation Foundation for Postgraduate,China(No.CX2018B066).
文摘To investigate the influence of microwave heating on the dynamic behavior and failure mechanisms of rock,dynamic compression tests were conducted on microwave-irradiated sandstone specimens using a modified split Hopkinson pressure bar(SHPB)system.Experimental results show that microwave radiation can effectively weaken the compressive strength of sandstone.Rock specimens show three different failure modes under impact load:tensile failure,tensile−shear composite failure and compressive−shear failure.The dynamic Poisson’s ratio,calculated using the measured P-and S-wave velocities,is introduced to describe the deformation characteristics of sandstone.With the increase in microwave power and heating time,the Poisson’s ratio declines first and then increases slightly,and the turning point occurs at 244.6℃.Moreover,the microstructural characteristics reveal that microwave radiation produces dehydration,pore expansion,and cracking of the rock.The damage mechanisms caused by microwave radiation are discussed based on thermal stress and steam pressure inside the rock,which provides a reasonable explanation for the experimental results.
基金Projects(51239005,51009072) supported by the National Natural Science Foundation of ChinaProject(2011BAF14B04) supported by the National Science&Technology Pillar Program of ChinaProject(13JDG084) supported by the Research Foundation for Advanced Talents of Jiansu University,China
文摘A three-dimensional transient numerical simulation was conducted to study the pressure fluctuations in low-specific-speed centrifugal pumps. The characteristics of the inner flow were investigated using the SST k-ω turbulence model. The distributions of pressure fluctuations in the impeller and the volute were recorded, and the pressure fluctuation intensity was analyzed comprehensively, at the design condition, using statistical methods. The results show that the pressure fluctuation intensity increases along the impeller streamline from the leading edge to the trailing edge. In the impeller passage, the intensity near the shroud is much higher than that near the hub at thc inlet. However, the intensity at the middle passage is almost equal to the intensity at the outlet. The pressure fluctuation intensity is the highest at the trailing edge on the pressure side and near the tongue because of the rotor-stator interaction. The distribution of pressure fluctuation intensity is symmetrical in the axial cross sections of the volute channel. However, this intensity decreases with increasing radial distance. Hence, the pressure fluctuation intensity can be reduced by modifying the geometry of the leading edge in the impeller and the tongue in the volute.
基金supported by the National Basic Research Program of China(2012CB955602)National Key Program for Developing Basic Science(2010CB428904)Natural Science Foundation of China(41176006 and 40921004)
文摘Six coupled general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are em-ployed for examining the full evolution of the North Pacific mode water and Subtropical Countercurrent (STCC) under global warming over 400 years following the Representative Concentration Pathways (RCP) 4.5. The mode water and STCC first show a sharp weakening trend when the radiative forcing increases, but then reverse to a slow strengthening trend of smaller magnitude after the radiative forcing is stablized. As the radiative forcing increases during the 21st century, the ocean warming is surface-intensified and decreases with depth, strengthening the upper ocean's stratification and becoming unfavorable for the mode water formation. Moving southward in the subtropical gyre, the shrinking mode water decelerates the STCC to the south. After the radiative forcing is stabilized in the 2070s, the subsequent warming is greater at the subsurface than at the sea surface, destabilizing the upper ocean and becoming favorable for the mode water formation. As a result, the mode water and STCC recover gradually after the radiative forc-ing is stabilized.
基金Supported by the National Basic Research Program of China(2007CB209400) Hunan Provincial Natural Science Foundation of China(10JJ3007)
文摘A new wing crack model subjected to hydraulic pressure and far-field stresses was proposed considering the effect of hydraulic pressure in wing crack and the connected part of the main crack on the stress intensity factor at the wing crack tip. With the equivalent crack length Ieq of the wing crack introduced, the stress intensity factor Kl at the wing crack tip was as- sumed to the sum of two terms: on one hand a component K1^(1) for a single isolated straight wing crack of length 21, and subjected to hydraulic pressure in the wing crack and far-field stresses; on the other hand a component K1(2) due to the effective shear stress induced by the presence of the equivalent main crack. The lateral tensile stress and hydraulic high pressure are the key factors that induce crack propagation unsteadily. The new wing crack theoretical model proposed can supply references for the study on hydraulic fracture in fractured masses, hydraulic fracturing in rock masses.
基金supported by the National Natural Science Foundation of China(Grant Nos.51239006,91215301 and 51479098)
文摘Experimental tests show that static pre-loading has a significant effect on the dynamic strength of concrete.Based on meso-scale particle element model,numerical simulations of dynamic bending tests with pre-loading are performed.Complete stress–strain relationships are then obtained.Significant increase in dynamic strength is found when the pre-loadings are imposed within the elastic limit of concrete.However,when the imposition of pre-loadings reaches the plastic or softening range,dynamic strengths may gradually decrease along with the increase in pre-loadings.The distribution of energy components and the failure modes are discussed to explain the mechanisms of the phenomena.
基金supported by the National Natural Science Foundation of China(No.61475133)the Hebei Provincial Natural Science Foundation(No.F2015203270)+3 种基金the Yanshan University Doctor Foundation(No.B872)the Yanshan University Youth Foundation(No.14LGB015)the College Youth Talent Project of Hebei Province(No.BJ2014057)the Hebei Educational Committee Natural Science Youth Fund(No.QN2014034)
文摘The bending characteristics of dual-hole polarization maintaining photonic crystal fiber(PM-PCF) are demonstrated in this paper. The modal interference is induced by the LP_(01) mode and LP_(11) mode propagating in a single PM-PCF with the same polarization direction. Simulation results demonstrate that the bending radius induces the phase difference between LP_(01) mode and LP_(11) mode, which leads to the change of light interference intensity on the fiber output facet. The relationship between bending radius and normalized interference intensity with three different bending angles is discussed, where the bending angle is defined as the angle between hole axis and the x axis. The bending sensitivity is obtained to be about-188.78/m around the bending radius of 1.5 cm with the bending angle of 90°. The bending characteristics can contribute for online bending detection in widespread areas.
基金Supported by National Natural Science Foundation of China under Grant No.11174109
文摘Stationary entanglement in a four-mode optomechanical system,especially under room-temperature,is discussed.In this scheme,when the coupling strengths between the two target modes and the mechanical resonator are equal,the results cannot be explained by the Bogoliubov-mode-based scheme.This is related to the idea of quantummechanics-free subspace,which plays an important role when the thermal noise of the mechanical modes is considered.Significantly prominent steady-state entanglement can be available under room-temperature.