Recent observations support an emerging paradigm that climate variability dominates nutrient enrichment in costal eco-systems, which can explain seasonal and inter-annual variability of phytoplankton community composi...Recent observations support an emerging paradigm that climate variability dominates nutrient enrichment in costal eco-systems, which can explain seasonal and inter-annual variability of phytoplankton community composition, biomass (Chl-a), and primary production (PP). In this paper, we combined observation and modeling to investigate the regulation of phytoplankton dynamics in Chesapeake Bay. The year we chose is 1996 that has high river runoff and is usually called a 'wet year'. A 3-D physical-biogeochemical model based on ROMS was developed to simulate the seasonal cycle and the regional distributions of phytoplankton biomass and primary production in Chesapeake Bay. Based on the model results, NO3 presents a strong contrast to the river nitrate load during spring and the highest concentration in the bay reaches around 80 mmol Nm-3 . Compared with the normal year, phytoplankton bloom in spring of 1996 appears in lower latitudes with a higher concentration. Quantitative comparison between the modeled and observed seasonal averaged dissolved inorganic nitrogen concentrations shows that the model produces reliable results. The correlation coefficient r2 for all quantities exceeds 0.95, and the skill parameter for the four seasons is all above 0.95.展开更多
In order to overcome the low precision and weak applicability problems of the current municipal water network state simulation model, the water network structure is studied. Since the telemetry system has been applied...In order to overcome the low precision and weak applicability problems of the current municipal water network state simulation model, the water network structure is studied. Since the telemetry system has been applied increasingly in the water network, and in order to reflect the network operational condition more accurately, a new water network macroscopic model is developed by taking the auto-control adjusting valve opening state into consideration. Then for highly correlated or collinear independent variables in the model, the partial least squares (PLS) regression method provides a model solution which can distinguish between the system information and the noisy data. Finally, a hypothetical water network is introduced for validating the model. The simulation results show that the relative error is less than 5.2%, indicating that the model is efficient and feasible, and has better generalization performance.展开更多
Aiming at the problem that the traditional control strategy of permanent magnet synchronous motor(PMSM)for electric vehicles has low control performance,a novel adaptive non-singular fast terminal sliding mode control...Aiming at the problem that the traditional control strategy of permanent magnet synchronous motor(PMSM)for electric vehicles has low control performance,a novel adaptive non-singular fast terminal sliding mode control(ANFTSMC)model predictive torque control(MPTC)strategy is proposed.A new adaptive exponential approach rate is designed,and the traditional switching function sgn()is replaced by the hyperbolic tangent function tanh().A new ANFTSMC with extended state observer(ESO)is constructed as the speed regulator of the system,and ESO can observe disturbances.This improved method weakens chattering and improves the robustness of the system.To realize sensorless control of the speed control system,an ESO speed observer based on tanh(Fal)is constructed.Compared with the traditional ESO based on Fal function,the observation error is smaller,and the observation accuracy is higher.Finally,aiming at the model predictive torque control strategy used,a new objective function construction method is proposed,which avoids the design of weight coefficient,and the traditional voltage vector selection method is improved and optimized,which reduces the calculation amount of the algorithm.展开更多
A hybrid automaton modeling approach that incorporates state space partitioning, phase dynamic modeling and control law synthesis by control strategy is utilized to develop a hybrid automaton model of molten carbonate...A hybrid automaton modeling approach that incorporates state space partitioning, phase dynamic modeling and control law synthesis by control strategy is utilized to develop a hybrid automaton model of molten carbonate fuel cell (MCFC) stack shutdown. The shutdown operation is divided into several phases and their boundaries are decided according to a control strategy, which is a set of specifications about the dynamics of MCFC stack during shutdown. According to the control strategy, the specification of increasing stack temperature is satisfied in a phase that can be modeled accurately. The model for phase that has complex dynamic is approximated. The duration of this kind of phase is decreased to minimize the error caused by model approximation.展开更多
基金supported by the National Science Foundation project of M. Li (OCE-082543)
文摘Recent observations support an emerging paradigm that climate variability dominates nutrient enrichment in costal eco-systems, which can explain seasonal and inter-annual variability of phytoplankton community composition, biomass (Chl-a), and primary production (PP). In this paper, we combined observation and modeling to investigate the regulation of phytoplankton dynamics in Chesapeake Bay. The year we chose is 1996 that has high river runoff and is usually called a 'wet year'. A 3-D physical-biogeochemical model based on ROMS was developed to simulate the seasonal cycle and the regional distributions of phytoplankton biomass and primary production in Chesapeake Bay. Based on the model results, NO3 presents a strong contrast to the river nitrate load during spring and the highest concentration in the bay reaches around 80 mmol Nm-3 . Compared with the normal year, phytoplankton bloom in spring of 1996 appears in lower latitudes with a higher concentration. Quantitative comparison between the modeled and observed seasonal averaged dissolved inorganic nitrogen concentrations shows that the model produces reliable results. The correlation coefficient r2 for all quantities exceeds 0.95, and the skill parameter for the four seasons is all above 0.95.
基金Supported by Tianjin Natural Science Foundation( No. 003611611).
文摘In order to overcome the low precision and weak applicability problems of the current municipal water network state simulation model, the water network structure is studied. Since the telemetry system has been applied increasingly in the water network, and in order to reflect the network operational condition more accurately, a new water network macroscopic model is developed by taking the auto-control adjusting valve opening state into consideration. Then for highly correlated or collinear independent variables in the model, the partial least squares (PLS) regression method provides a model solution which can distinguish between the system information and the noisy data. Finally, a hypothetical water network is introduced for validating the model. The simulation results show that the relative error is less than 5.2%, indicating that the model is efficient and feasible, and has better generalization performance.
基金Project of National Natural Science Foundation of China(No.61863023)。
文摘Aiming at the problem that the traditional control strategy of permanent magnet synchronous motor(PMSM)for electric vehicles has low control performance,a novel adaptive non-singular fast terminal sliding mode control(ANFTSMC)model predictive torque control(MPTC)strategy is proposed.A new adaptive exponential approach rate is designed,and the traditional switching function sgn()is replaced by the hyperbolic tangent function tanh().A new ANFTSMC with extended state observer(ESO)is constructed as the speed regulator of the system,and ESO can observe disturbances.This improved method weakens chattering and improves the robustness of the system.To realize sensorless control of the speed control system,an ESO speed observer based on tanh(Fal)is constructed.Compared with the traditional ESO based on Fal function,the observation error is smaller,and the observation accuracy is higher.Finally,aiming at the model predictive torque control strategy used,a new objective function construction method is proposed,which avoids the design of weight coefficient,and the traditional voltage vector selection method is improved and optimized,which reduces the calculation amount of the algorithm.
文摘A hybrid automaton modeling approach that incorporates state space partitioning, phase dynamic modeling and control law synthesis by control strategy is utilized to develop a hybrid automaton model of molten carbonate fuel cell (MCFC) stack shutdown. The shutdown operation is divided into several phases and their boundaries are decided according to a control strategy, which is a set of specifications about the dynamics of MCFC stack during shutdown. According to the control strategy, the specification of increasing stack temperature is satisfied in a phase that can be modeled accurately. The model for phase that has complex dynamic is approximated. The duration of this kind of phase is decreased to minimize the error caused by model approximation.