The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity...The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity direction in horizontal wells.Therefore,measuring the mixture flow and water holdup is difficult,resulting in poor interpretation accuracy of the production logging output profile.In this paper,oil–water two-phase flow dynamic simulation logging experiments in horizontal oil–water two-phase fl ow simulation wells were conducted using the Multiple Array Production Suite,which comprises a capacitance array tool(CAT)and a spinner array tool(SAT),and then the response characteristics of SAT and CAT in diff erent fl ow rates and water cut production conditions were studied.According to the response characteristics of CAT in diff erent water holdup ranges,interpolation imaging along the wellbore section determines the water holdup distribution,and then,the oil–water two-phase velocity fi eld in the fl ow section was reconstructed on the basis of the fl ow section water holdup distribution and the logging value of SAT and combined with the rheological equation of viscous fl uid,and the calculation method of the oil–water partial phase fl ow rate in the fl ow section was proposed.This new approach was applied in the experiment data calculations,and the results are basically consistent with the experimental data.The total fl ow rate and water holdup from the calculation are in agreement with the set values in the experiment,suggesting that the method has high accuracy.展开更多
Some mechanistic models have been proposed to predict the No3- concentrations in the soil solution at root surface and the NO3-N uptake by plants, but all these relatively effective non-steady state models have not ye...Some mechanistic models have been proposed to predict the No3- concentrations in the soil solution at root surface and the NO3-N uptake by plants, but all these relatively effective non-steady state models have not yet been verified by any soil culture experiment. In the present study, a mathematical model based on the nutrient transport to the roots, root length and root uptake kinetics as well as taking account of the inter-root competition was used for calculation, and soil culture experiments with rice, wheat and rape plants grown on alkali, neutral and acid soils in rhizoboxes with nylon screen as a isolator were carried out to evaluate the prediction ability of the model through comparing the measured NO3-concentrations at root surface and N uptake with the calculated values. Whether the inter-root competition for nutrients was accounted for in the model was of less importance to the calculated N uptake but could induce significant changes in the relative concentrations of NO3- at root surface. For the three soils and crops, the measured NO3-N uptake agreed well with the calculated one, and the calculated relative concentrations at root surface were approximate to the measured values. But an appropriate rectification for some conditions is necessary when the plant uptake parameter obtained in solution culture experiment is applied to soil culture. In contrast with the present non-steady state model, the predicted relative concentrations, which show an accumulation, by the Phillips' steady-state model were distinct from the measured values which show a depletion, indicating that the present model has a better prediction ability than the steady-state model.展开更多
XML is an important technology for Internet-based data exchange with far reaching capabilities be-yond for just data exchange. The paper describes the first results of a project that aims to explore the applicabil-ity...XML is an important technology for Internet-based data exchange with far reaching capabilities be-yond for just data exchange. The paper describes the first results of a project that aims to explore the applicabil-ity of XML technology for web-based software engineering with the emphasis on collaborative software testing in-volving the use of statechart. The paper presents the approach of building the statechart schema with XML Sche-ma. It also describes the use of the schema in a web-based collaborative software testing CASE environment.展开更多
Solubility of quinine in supercritical carbon dioxide(SCCO_2) was experimentally measured in the pressure range of 8 to 24 MPa, at three constant temperatures: 308.15 K, 318.15 K and 328.15 K. Measurement was carried ...Solubility of quinine in supercritical carbon dioxide(SCCO_2) was experimentally measured in the pressure range of 8 to 24 MPa, at three constant temperatures: 308.15 K, 318.15 K and 328.15 K. Measurement was carried out in a semi-dynamic system. Experimental data were correlated by iso-fugacity model(based on cubic equations of state, CEOS), Modified Mendez–Santiago–Teja(MST) and Modified Bartle semi-empirical models. Two cubic equations of state: Peng–Robinson(PR) and Dashtizadeh–Pazuki–Ghotbi–Taghikhani(DPTG) were adopted for calculation of equilibrium parameters in CEOS modeling. Interaction coefficients(k_(ij)& l_(ij)) of van der Waals(vdW) mixing rules were considered as the correlation parameters in CEOS-based modeling and their contribution to the accuracy of model was investigated. Average Absolute Relative Deviation(AARD) between correlated and experimental data was calculated and compared as the index of validity and accuracy for different modeling systems. In this basis it was realized that the semi-empirical equations especially Modified MST can accurately support the theoretical studies on phase equilibrium behavior of quinine–SCCO_2 media. Among the cubic equations of state DPGT within two-parametric vd W mixing rules provided the best data fitting and PR within one-parametric vd W mixing rules demonstrated the highest deviation respecting to the experimental data. Overall, in each individual modeling system the best fitting was observed on the data points attained at 318 K, which could be perhaps due to the moderate thermodynamic state of supercritical phase.展开更多
It is significant to consider the effect of uncertainty of the measured modal parameters on the updated finite element(FE) model,especially for updating the FE model of practical bridges,since the uncertainty of the m...It is significant to consider the effect of uncertainty of the measured modal parameters on the updated finite element(FE) model,especially for updating the FE model of practical bridges,since the uncertainty of the measured modal parameters cannot be ignored owing to the application of output-only identification method and the existence of the measured noise.A reasonable method is to define the objective of the FE model updating as the statistical property of the measured modal parameters obtained by conducting couples of identical modal tests,however,it is usually impossible to implement repeated modal test due to the limit of practical situation and economic reason.In this study,a method based on fuzzy finite element(FFM) was proposed in order to consider the effect of the uncertainty of the measured modal parameters on the updated FE model by using the results of a single modal test.The updating parameters of bridges were deemed as fuzzy variables,and then the fuzzification of objective of the FE model updating was proposed to consider the uncertainty of the measured modal parameters.Finally,the effectiveness of the proposed method was verified by updating the FE model of a practical bridge with the measured modal parameters.展开更多
Experimental tests show that static pre-loading has a significant effect on the dynamic strength of concrete.Based on meso-scale particle element model,numerical simulations of dynamic bending tests with pre-loading a...Experimental tests show that static pre-loading has a significant effect on the dynamic strength of concrete.Based on meso-scale particle element model,numerical simulations of dynamic bending tests with pre-loading are performed.Complete stress–strain relationships are then obtained.Significant increase in dynamic strength is found when the pre-loadings are imposed within the elastic limit of concrete.However,when the imposition of pre-loadings reaches the plastic or softening range,dynamic strengths may gradually decrease along with the increase in pre-loadings.The distribution of energy components and the failure modes are discussed to explain the mechanisms of the phenomena.展开更多
The modal analysis of piping system in air conditioner (AC) outdoor unit is essential to investigate the vibration properties of the system. In view of the growing significance of numerical finite element (FE) model f...The modal analysis of piping system in air conditioner (AC) outdoor unit is essential to investigate the vibration properties of the system. In view of the growing significance of numerical finite element (FE) model for vibration behaviour prediction, the AC piping elastic end support characterization has been explored. The axial and radial stiffness variables (ka, kr1, kr2) of the compressor-piping mounting are obtained and represented by dynamic stiffness of compressor grommet. They are obtained from dynamic load deflection test based on compressor operating condition such as excitation frequency and amplitude. The unknown stiffness variables of the other tube end (chassis-piping mounting) are determined by parameter fine tuning. An experimental modal analysis using impact hammer test has also been employed to determine the vibration properties such as natural frequencies, mode shapes and damping ratio of the piping structures. The modal parameters acquisition using SCADAS mobile acquisition system and LMS Impact Testing software is compared with the corresponding simulated modal properties using Abaqus. Most of the simulated natural frequencies achieve good correlation with the measured frequencies and it is reasonably a good prediction model to predict vibration behaviour of AC piping structures.展开更多
A two-mode entangled state was generated experimentally through mixing two squeezed lights from two optical parametric amplifiers on a 50/50 beam splitter.The entangled beams were measured by means of two pairs of bal...A two-mode entangled state was generated experimentally through mixing two squeezed lights from two optical parametric amplifiers on a 50/50 beam splitter.The entangled beams were measured by means of two pairs of balanced homodyne detection systems respectively.The relative phases between the local beams and the detected beams can be locked by using the optical phase modulation technique.The covariance matrix of the two-mode entangled state was obtained when the relative phase of the local beam and the detected beam in one homodyne detection system is locked and the other is scanned.This method provides a way by which one can extract the covariance matrix of any selected quadrature components of two-mode Gaussian state.展开更多
基金supported by National Natural Science Foundation of China(41474115,42174155)Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University)Ministry of Education of China(No K2018-02)。
文摘The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity direction in horizontal wells.Therefore,measuring the mixture flow and water holdup is difficult,resulting in poor interpretation accuracy of the production logging output profile.In this paper,oil–water two-phase flow dynamic simulation logging experiments in horizontal oil–water two-phase fl ow simulation wells were conducted using the Multiple Array Production Suite,which comprises a capacitance array tool(CAT)and a spinner array tool(SAT),and then the response characteristics of SAT and CAT in diff erent fl ow rates and water cut production conditions were studied.According to the response characteristics of CAT in diff erent water holdup ranges,interpolation imaging along the wellbore section determines the water holdup distribution,and then,the oil–water two-phase velocity fi eld in the fl ow section was reconstructed on the basis of the fl ow section water holdup distribution and the logging value of SAT and combined with the rheological equation of viscous fl uid,and the calculation method of the oil–water partial phase fl ow rate in the fl ow section was proposed.This new approach was applied in the experiment data calculations,and the results are basically consistent with the experimental data.The total fl ow rate and water holdup from the calculation are in agreement with the set values in the experiment,suggesting that the method has high accuracy.
文摘Some mechanistic models have been proposed to predict the No3- concentrations in the soil solution at root surface and the NO3-N uptake by plants, but all these relatively effective non-steady state models have not yet been verified by any soil culture experiment. In the present study, a mathematical model based on the nutrient transport to the roots, root length and root uptake kinetics as well as taking account of the inter-root competition was used for calculation, and soil culture experiments with rice, wheat and rape plants grown on alkali, neutral and acid soils in rhizoboxes with nylon screen as a isolator were carried out to evaluate the prediction ability of the model through comparing the measured NO3-concentrations at root surface and N uptake with the calculated values. Whether the inter-root competition for nutrients was accounted for in the model was of less importance to the calculated N uptake but could induce significant changes in the relative concentrations of NO3- at root surface. For the three soils and crops, the measured NO3-N uptake agreed well with the calculated one, and the calculated relative concentrations at root surface were approximate to the measured values. But an appropriate rectification for some conditions is necessary when the plant uptake parameter obtained in solution culture experiment is applied to soil culture. In contrast with the present non-steady state model, the predicted relative concentrations, which show an accumulation, by the Phillips' steady-state model were distinct from the measured values which show a depletion, indicating that the present model has a better prediction ability than the steady-state model.
基金Sponsored by Guangxi Science Research Foundation (Grant No. 0141046)
文摘XML is an important technology for Internet-based data exchange with far reaching capabilities be-yond for just data exchange. The paper describes the first results of a project that aims to explore the applicabil-ity of XML technology for web-based software engineering with the emphasis on collaborative software testing in-volving the use of statechart. The paper presents the approach of building the statechart schema with XML Sche-ma. It also describes the use of the schema in a web-based collaborative software testing CASE environment.
基金Supported by the National Natural Science Foundation of China(20976103)
文摘Solubility of quinine in supercritical carbon dioxide(SCCO_2) was experimentally measured in the pressure range of 8 to 24 MPa, at three constant temperatures: 308.15 K, 318.15 K and 328.15 K. Measurement was carried out in a semi-dynamic system. Experimental data were correlated by iso-fugacity model(based on cubic equations of state, CEOS), Modified Mendez–Santiago–Teja(MST) and Modified Bartle semi-empirical models. Two cubic equations of state: Peng–Robinson(PR) and Dashtizadeh–Pazuki–Ghotbi–Taghikhani(DPTG) were adopted for calculation of equilibrium parameters in CEOS modeling. Interaction coefficients(k_(ij)& l_(ij)) of van der Waals(vdW) mixing rules were considered as the correlation parameters in CEOS-based modeling and their contribution to the accuracy of model was investigated. Average Absolute Relative Deviation(AARD) between correlated and experimental data was calculated and compared as the index of validity and accuracy for different modeling systems. In this basis it was realized that the semi-empirical equations especially Modified MST can accurately support the theoretical studies on phase equilibrium behavior of quinine–SCCO_2 media. Among the cubic equations of state DPGT within two-parametric vd W mixing rules provided the best data fitting and PR within one-parametric vd W mixing rules demonstrated the highest deviation respecting to the experimental data. Overall, in each individual modeling system the best fitting was observed on the data points attained at 318 K, which could be perhaps due to the moderate thermodynamic state of supercritical phase.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51008097 and 11172078)the National Key Technology R&D Program (Grant No. 2011BAK02B02)
文摘It is significant to consider the effect of uncertainty of the measured modal parameters on the updated finite element(FE) model,especially for updating the FE model of practical bridges,since the uncertainty of the measured modal parameters cannot be ignored owing to the application of output-only identification method and the existence of the measured noise.A reasonable method is to define the objective of the FE model updating as the statistical property of the measured modal parameters obtained by conducting couples of identical modal tests,however,it is usually impossible to implement repeated modal test due to the limit of practical situation and economic reason.In this study,a method based on fuzzy finite element(FFM) was proposed in order to consider the effect of the uncertainty of the measured modal parameters on the updated FE model by using the results of a single modal test.The updating parameters of bridges were deemed as fuzzy variables,and then the fuzzification of objective of the FE model updating was proposed to consider the uncertainty of the measured modal parameters.Finally,the effectiveness of the proposed method was verified by updating the FE model of a practical bridge with the measured modal parameters.
基金supported by the National Natural Science Foundation of China(Grant Nos.51239006,91215301 and 51479098)
文摘Experimental tests show that static pre-loading has a significant effect on the dynamic strength of concrete.Based on meso-scale particle element model,numerical simulations of dynamic bending tests with pre-loading are performed.Complete stress–strain relationships are then obtained.Significant increase in dynamic strength is found when the pre-loadings are imposed within the elastic limit of concrete.However,when the imposition of pre-loadings reaches the plastic or softening range,dynamic strengths may gradually decrease along with the increase in pre-loadings.The distribution of energy components and the failure modes are discussed to explain the mechanisms of the phenomena.
文摘The modal analysis of piping system in air conditioner (AC) outdoor unit is essential to investigate the vibration properties of the system. In view of the growing significance of numerical finite element (FE) model for vibration behaviour prediction, the AC piping elastic end support characterization has been explored. The axial and radial stiffness variables (ka, kr1, kr2) of the compressor-piping mounting are obtained and represented by dynamic stiffness of compressor grommet. They are obtained from dynamic load deflection test based on compressor operating condition such as excitation frequency and amplitude. The unknown stiffness variables of the other tube end (chassis-piping mounting) are determined by parameter fine tuning. An experimental modal analysis using impact hammer test has also been employed to determine the vibration properties such as natural frequencies, mode shapes and damping ratio of the piping structures. The modal parameters acquisition using SCADAS mobile acquisition system and LMS Impact Testing software is compared with the corresponding simulated modal properties using Abaqus. Most of the simulated natural frequencies achieve good correlation with the measured frequencies and it is reasonably a good prediction model to predict vibration behaviour of AC piping structures.
基金supported by the National Basic Research Program of China(Grant No.2011CB921601)the National Natural Science Foundation of China(Grant No.11234008)+1 种基金the NSFC Project for Excellent Research Team(Grant Nos.61121064 and 11234008)Doctoral Program Foundation of the Ministry of Education China(Grant No.20111401130001)
文摘A two-mode entangled state was generated experimentally through mixing two squeezed lights from two optical parametric amplifiers on a 50/50 beam splitter.The entangled beams were measured by means of two pairs of balanced homodyne detection systems respectively.The relative phases between the local beams and the detected beams can be locked by using the optical phase modulation technique.The covariance matrix of the two-mode entangled state was obtained when the relative phase of the local beam and the detected beam in one homodyne detection system is locked and the other is scanned.This method provides a way by which one can extract the covariance matrix of any selected quadrature components of two-mode Gaussian state.