Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ...Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ultimate uplift capacity were further determined by four methods(displacement controlling method(DCM),reduction coefficient method(RCM),maximum curvature method(MCM),and critical stiffness method(CSM))and compared with the measured value.Through the analysis of the relationship between the change rate of pullout stiffness and displacement,a method used to determine the ultimate uplift capacity via non-intact load−displacement curve was proposed.The results show that the predicted value determined by DCM is more conservative,while the predicted value determined by MCM is larger than the measured value.This suggests that RCM and CSM in engineering applications can be preferentially applied.Moreover,the development law of the change rate of pullout stiffness with displacement agrees well with the attenuation form of power function.The theoretical predicted results of ultimate uplift capacity based on the change rate of pullout stiffness will not be affected by the integrity of the curve.The method is simple and applicable for the piles that are not loaded to failure state,and thus provides new insights into ultimate uplift capacity determination of test piles.展开更多
The failure behavior of diamond-coated die was investigated experimentally and analytically through finite element method (FEM) simulation in the present work. Diamond coatings were fabricated by straight hot filament...The failure behavior of diamond-coated die was investigated experimentally and analytically through finite element method (FEM) simulation in the present work. Diamond coatings were fabricated by straight hot filament chemical vapor deposition (CVD) passing through the interior hole of the drawing die using a mixture of hydrogen and acetone as source gases. The performance tests were made under real drawing condition. Scanning electron microscopy (SEM) was used for the study of coating wear after die service. The coating wear appears on two regions of the reduction zone: one is near the entrance where the contact begins, and the other is at the end of the reduction zone. FEM simulation was made for calculating the von Mises stresses distribution on the coating and substrate during the drawing process. The present work was of great practical significance for the improvement of drawing performance of diamond-coated drawing dies.展开更多
基金Project(2016YFC0802203)supported by the National Key R&D Program of ChinaProject(2013G001-A-2)supported by the Science and Technology Research and Development Program of China Railway CorporationProject(SKLGDUEK2011)supported by the State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining&Technology。
文摘Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ultimate uplift capacity were further determined by four methods(displacement controlling method(DCM),reduction coefficient method(RCM),maximum curvature method(MCM),and critical stiffness method(CSM))and compared with the measured value.Through the analysis of the relationship between the change rate of pullout stiffness and displacement,a method used to determine the ultimate uplift capacity via non-intact load−displacement curve was proposed.The results show that the predicted value determined by DCM is more conservative,while the predicted value determined by MCM is larger than the measured value.This suggests that RCM and CSM in engineering applications can be preferentially applied.Moreover,the development law of the change rate of pullout stiffness with displacement agrees well with the attenuation form of power function.The theoretical predicted results of ultimate uplift capacity based on the change rate of pullout stiffness will not be affected by the integrity of the curve.The method is simple and applicable for the piles that are not loaded to failure state,and thus provides new insights into ultimate uplift capacity determination of test piles.
基金Supported by National Natural Science Foundation of China (No. 50975177 and No. 51005154)China Postdoctoral Science Foundation (No. 20100470029)Tribology Science Fund of State Key Laboratory of Tribology (No. SKLTKF10B02)
文摘The failure behavior of diamond-coated die was investigated experimentally and analytically through finite element method (FEM) simulation in the present work. Diamond coatings were fabricated by straight hot filament chemical vapor deposition (CVD) passing through the interior hole of the drawing die using a mixture of hydrogen and acetone as source gases. The performance tests were made under real drawing condition. Scanning electron microscopy (SEM) was used for the study of coating wear after die service. The coating wear appears on two regions of the reduction zone: one is near the entrance where the contact begins, and the other is at the end of the reduction zone. FEM simulation was made for calculating the von Mises stresses distribution on the coating and substrate during the drawing process. The present work was of great practical significance for the improvement of drawing performance of diamond-coated drawing dies.