There are three well known types of wire lines for transmitting electrical energy or information. The first type is ordinary two wires line (below A-Line). The second type is so-called single-wire line, where ground...There are three well known types of wire lines for transmitting electrical energy or information. The first type is ordinary two wires line (below A-Line). The second type is so-called single-wire line, where ground plays the role instead of second wire. Polyphase systems belong to the third type, three phase system is the most popular among them. The purpose of this article is another attempt to build a one-wired (without ground) system--the transmission of electrical energy. In this paper an original idea of building such a system is justified, the results of simulations and laboratory modeling are presented. It is shown that the proposed method can reduce the cost of electric transmission lines, the losses in them and significantly reduce interferences.展开更多
Simulation has proven to be an effective tool for analyzing pipeline network systems (PNS) in order to determine the design and operational variables which are essential for evaluating the performance of the system....Simulation has proven to be an effective tool for analyzing pipeline network systems (PNS) in order to determine the design and operational variables which are essential for evaluating the performance of the system. This paper discusses the use of simulation for performance analysis of transmission PNS. A simulation model was developed for determining flow and pressure variables for different configuration of PNS. The mathematical formulation for the simulation model was derived based on the principles of energy conservation, mass balance, and compressor characteristics. For the determination of the pressure and flow variables, solution procedure was developed based on iterative Newton Raphson scheme and implemented using visual C++6. Evaluations of the simulation model with the existing pipeline network system showed that the model enabled to determine the operational variables with less than ten iterations. The performances of the compressor working in the pipeline network system xvhich includes energy consumption, compression ratio and discharge pressure were evaluated to meet pressure requirements ranging from 4000-5000 kPa at various speed. Results of the analyses from the simulation indicated that the model could be used for performance analysis to assist decisions regarding the design and optimal operations of transmission PNS.展开更多
文摘There are three well known types of wire lines for transmitting electrical energy or information. The first type is ordinary two wires line (below A-Line). The second type is so-called single-wire line, where ground plays the role instead of second wire. Polyphase systems belong to the third type, three phase system is the most popular among them. The purpose of this article is another attempt to build a one-wired (without ground) system--the transmission of electrical energy. In this paper an original idea of building such a system is justified, the results of simulations and laboratory modeling are presented. It is shown that the proposed method can reduce the cost of electric transmission lines, the losses in them and significantly reduce interferences.
文摘Simulation has proven to be an effective tool for analyzing pipeline network systems (PNS) in order to determine the design and operational variables which are essential for evaluating the performance of the system. This paper discusses the use of simulation for performance analysis of transmission PNS. A simulation model was developed for determining flow and pressure variables for different configuration of PNS. The mathematical formulation for the simulation model was derived based on the principles of energy conservation, mass balance, and compressor characteristics. For the determination of the pressure and flow variables, solution procedure was developed based on iterative Newton Raphson scheme and implemented using visual C++6. Evaluations of the simulation model with the existing pipeline network system showed that the model enabled to determine the operational variables with less than ten iterations. The performances of the compressor working in the pipeline network system xvhich includes energy consumption, compression ratio and discharge pressure were evaluated to meet pressure requirements ranging from 4000-5000 kPa at various speed. Results of the analyses from the simulation indicated that the model could be used for performance analysis to assist decisions regarding the design and optimal operations of transmission PNS.