The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this wo...The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.展开更多
Molecular dynamics simulations were carried out to study the configuration energy and radial distribution functions of mmonium dihydrogen phosphate solution at different temperatures. The dihydrogen phosphate ion was ...Molecular dynamics simulations were carried out to study the configuration energy and radial distribution functions of mmonium dihydrogen phosphate solution at different temperatures. The dihydrogen phosphate ion was treated as a seven-site model and the ammonium ion was regarded as a five-site model, while a simple-point-charge model for water molecule. An unusually local particle number density fluctuation was observed in the system at saturation temperature. It can be found that the potential energy increases slowly with the temperature from 373 K to 404 K, which indicates that the ammonium dihydrogen phosphate has partly decomposed. The radial distribution function between the hydrogen atom of ammonium cation and the oxygen atom of dihydrogen phosphate ion at three different temperatures shows obvious difference, which indicates that the average H-bond number changes obviously with the temperature. The temperature has an influence on the combination between hydrogen atoms and phosphorus atoms of dihydrogen phosphate ion and there are much more growth units at saturated solutions.展开更多
Molecular dynamic simulation was employed to predict the melting points Tm of TNAD/HMX, TNAD/RDX, TNAD/DINA, and TNAD/DNP systems (tans-1,4,5,8- tetranitro-1,4,5,8-tetraazadacalin (TNAD), dinitropiperazine (DNP),...Molecular dynamic simulation was employed to predict the melting points Tm of TNAD/HMX, TNAD/RDX, TNAD/DINA, and TNAD/DNP systems (tans-1,4,5,8- tetranitro-1,4,5,8-tetraazadacalin (TNAD), dinitropiperazine (DNP), cyclotetramethylenetetranitroamine (HMX), cyclotrimethylenetrinitramine (RDX), and N-nitrodihydroxyethylaminedinitrate (DINA)). Tm was determined from the inflexion point on the curve of mean specific volume vs. temperature. The result shows that the Tm values of TNAD/HMX, TNAD/RDX, and TNAD/DINA systems are 500, 536, and 488 K, respectively. The TNAD/DNP system has no obvious Tm value, which shows the system is insoluble. Using Tm, the solubility of the four systems was analyzed. The radial distribution functions of the four systems were analyzed and the main intermolecular forces between TNAD and other energetic components are short-range interactions. The better the solubility is, the stronger the intermoleenlar interaction is. In addition, the force field energy at different temperature was also analyzed to predict Tm of the four systems.展开更多
Using molecular dynamics (MD) simulation, the diffusion of oxygen, methane, ammonia and carbon dioxide in water was simulated in the canonical NVT ensemble, and the diffusion coefficient was analyzed by the clustering...Using molecular dynamics (MD) simulation, the diffusion of oxygen, methane, ammonia and carbon dioxide in water was simulated in the canonical NVT ensemble, and the diffusion coefficient was analyzed by the clustering method. By comparing to the conventional method (using the Einstein model) and the differentiation-interval variation method, we found that the results ob- tained by the clustering method used in this study are more close to the experimental values. This method proved to be more reason- able than the other two methods.展开更多
Black cotton soil in East Africa is not a stable engineering material for highway and railroad projects. Its strong swelling potential when it absorbs water causes distresses in subgrade of highway and railroad, and t...Black cotton soil in East Africa is not a stable engineering material for highway and railroad projects. Its strong swelling potential when it absorbs water causes distresses in subgrade of highway and railroad, and thus leads to failures of the projects. This paper presents study on the swelling characteristics of black cotton soil in East Africa. Lab tests were conducted to obtain its basic engineering properties, and the results show that black cotton soil contains high amount of montmorillonite and exchangeable cations and is strong expansive soil. Molecular modelling was exploited to further investigate water absorption ability of montmorillonite. Three different molecular models of montmorillonite were constructed and used for simulations, among which Types I and II montmorillonite represent the expansive soil montmorillonite in China, and Types II and III montmorillonite represent black cotton soil montmorillonite in East Africa. The results showed that the interlayer cations of Type III montmorillonite possessed the strongest water absorption ability based on analysis of radial distribution function(RDF) of cations. Interlayer compensatory cations of Na+ enhance the hydration ability of the other major cations, thus resulting in the strong swelling potential of East-Africa black cotton soil.展开更多
To research the relationship between the elastic parameters and the molecular structures of nano hybrid polyhedral oligomeric silsesquioxanes (POSS) materials, the mechanical properties at different temperatures for...To research the relationship between the elastic parameters and the molecular structures of nano hybrid polyhedral oligomeric silsesquioxanes (POSS) materials, the mechanical properties at different temperatures for three POSS polymers with different molecular architectures, polymerlized norbornene POSS homopolymer (PNPOSS, pedant architecture), γ- (2, 3 glycidoxy) propyl diaminoethane POSS polymer (GPDP, catena architecture) and trimethoxysilylcyelopentyl POSS polymer ( TSCP, cage - cage network architecture) were obtained by molecular dynamics simulations based on the Compass force-field. Results indicate that the moleculax architectures of the POSS polymers have great influence on the reinforced effects. The effect of the cage-cage network architecture is best, while that of the catena architecture takes second place and the pedant architecture has the least influence comparatively. The reinforced effects of the POSS monomers were examined. The influences of the temperatures on these effects were analyzed also. It may provide some basis for the reasonable applications of the excellent mechanical properties of the organic-inorganic nano-hybrid materials. It may also provide references for exploitation and design of the POSS materials.展开更多
A numerical method was developed to directly simulate the compressible, particle-laden turbulent jets.The fourth order compact finite difference schemes were used to discretize the space derivatives. The Lagrangian me...A numerical method was developed to directly simulate the compressible, particle-laden turbulent jets.The fourth order compact finite difference schemes were used to discretize the space derivatives. The Lagrangian method was adopted to simulate the particle motion based on one-way coupling. It is found that the turbulent intensity profiles attain self-similar status in the jet downstream regions. At the Stokes number of 1, particles are concentrated largely in the outer boundaries of the large-scale vortex structures with the most uneven distribution and the widest dispersion in the lateral direction. Particles at the much smaller Stokes numbers are distributed evenly in the flow field, and the lateral dispersion is also considerable. Distribution of particles at much larger Stokes numbers is more uniform and the lateral dispersion becomes small. In addition, the inflow conditions have different effects on the particle dispersion. The direct numerical simulation (DNS) results accord with the previous experiments and numerical studies.展开更多
The diffusion of C4-24 alkanes, aromatics and cycloalkanes in FAU and MFI zeolites were studied systemati- cally by molecular simulation. The basic data on diffusion energy barriers and the diffusion characteristics o...The diffusion of C4-24 alkanes, aromatics and cycloalkanes in FAU and MFI zeolites were studied systemati- cally by molecular simulation. The basic data on diffusion energy barriers and the diffusion characteristics of alkanes, cyclo- alkanes and aromatics in FAU and MFI zeolites were obtained. It was found out that the 12-member-ring openings between the two adjacent super cages limited the diffusion of hydrocarbons in FAU zeolites, and the hydrocarbon molecules diffused more easily in the intersections of MFI zeolite channels than in the straight channels between the intersections. It was more difficult for the molecules to diffuse in the sinusoidal channel of the MFI zeolite than in the straight channel because of the atoms at the comer of sinusoidal channel. The diffusion of three kinds of C6 alkanes was studied by gravity sorption method. The simulation results were well consistent with the experimental results, indicating that the simulation results were con- vincing.展开更多
A comprehensive study on various internal energies for the dipolar hard sphere fluids, including Stockmayer fluids, the mixtures of Lennard-Jones and Stockmayer and Stockmayer fluids and the electrolyte solutions is r...A comprehensive study on various internal energies for the dipolar hard sphere fluids, including Stockmayer fluids, the mixtures of Lennard-Jones and Stockmayer and Stockmayer fluids and the electrolyte solutions is reported based on the perturbation theory and mean spherical approximation. Compared with the results of molecular simulations, it is shown that the perturbation theory is better than the mean spherical approximation.展开更多
Microscopic structure and diffusion properties of benzene in ambient water (298 K, 0.1 MPa) and super critical water (673-773 K, 25-35 MPa) are investigated by molecular dynamics simulation with site-site models. It...Microscopic structure and diffusion properties of benzene in ambient water (298 K, 0.1 MPa) and super critical water (673-773 K, 25-35 MPa) are investigated by molecular dynamics simulation with site-site models. It is found that at the ambient condition, the water molecules surrounding a benzene molecule form a hydrogen bond network. The hydrogen bond interaction between supercritical water molecules decreases dramatically under supercritical conditions. The diffusion coefficients of both the solute molecule and solvent molecule at supercritical conditions increase by 30-180 times than those at the ambient condition. With the temperature approaching the critical temperature, the change of diffusion coefficient with pressure becomes pronounced.展开更多
The Grand Canonical Monte Carlo(GCMC) simulation method was used to investigate the adsorption properties of quinoline homologues(quinoline, 2-methyl quinoline, and 2,4-dimethyl quinoline) on the FAU zeolite. The adso...The Grand Canonical Monte Carlo(GCMC) simulation method was used to investigate the adsorption properties of quinoline homologues(quinoline, 2-methyl quinoline, and 2,4-dimethyl quinoline) on the FAU zeolite. The adsorption heat, adsorption isotherms, and adsorption sites of them were obtained. At the temperature ranging from 673.15 to 873.15 K, the Henry constant of quinoline homologues calculated on the FAU zeolite was applied to simulate their adsorption heat. And its value was more in accordance with the related data reported in the literature. The results showed that their isosteric heat decreased in the following order: 2,4-dimethyl quinoline(118.63 kJ/mol) > 2-methyl quinoline(110.45 kJ/mol) > quinoline(98 kJ/mol), and complied with the order of their adsorbate basicity. The competitive adsorption of three components of quinoline homologues on the FAU zeolite was calculated numerically at a temperature of 773.15 K and a pressure range of 0.1—100 MPa under the Universal force field. Their adsorption capacity decreased in the following order: quinoline > 2-methyl quinoline > 2,4-dimethyl quinoline. The smaller the molecule size of the adsorbate, the greater the saturated adsorption capacity would be. It was found that the quinoline homologues could be adsorbed in the main channels of 12- membered-ring framework of the zeolite. Simultaneously, the influence of silica/alumina ratio on the adsorption property of quinoline homologues in FAU zeolite was studied. The smaller the silica/alumina ratio, the greater the isosteric heat and adsorption capacity would be.展开更多
The grand canonical Monte Carlo (GCMC), the canonical Monte Carlo by using equal probability perturbation, and the molecular dynamics (MD) methods were used to study the capillary phase-transition (capillary condensat...The grand canonical Monte Carlo (GCMC), the canonical Monte Carlo by using equal probability perturbation, and the molecular dynamics (MD) methods were used to study the capillary phase-transition (capillary condensation and evaporation) and self-diffusion for a simple Lennard-Jones model of ethylene confined in slit carbon pores of 2.109 nm at temperatures between 141.26 K and 201.80 K. The critical point of capillary phase-transition was extrapolated by the critical power law and the law of rectilinear diameter from the capillary phase-transition data in the near critical region. The effects of temperature and fluid density on the parallel self-diffusion coefficients of ethylene molecules confined in the slit carbon pores were examined. The results showed that the parallel selfdiffusion coefficients in the capillary phase transition area strongly depended on the fluids local densities in the slit carbon pores.展开更多
The driven polymer translocation through a nanopore with unbiased initial configuration has been studied by using Langevin dynamics(LD) simulations.It is found that the scaling relationship between translocation time ...The driven polymer translocation through a nanopore with unbiased initial configuration has been studied by using Langevin dynamics(LD) simulations.It is found that the scaling relationship between translocation time and the polymer chain length is strongly affected by the friction coefficient in LD and the driving force.However,there is no scaling relationship between the translocation time and the friction coefficient.The translocation time is almost inversely proportional to the driving force,which is in agreement with those obtained in biased translocation.The scaling relationship between gyration radius(R g) of subchain at the trans side with the subchain length(L) is R g ~L 0.33 that is in good agreement with the limiting value for molten globule state,while the curve of R g of subchain at the cis side has two distinct stages.During translocation,the subchain at the cis side is being stretched gradually,and the structure of the subchain transforms from sphere-like to rod-like.When the effect of stretching reaches the tail end,the subchain is at the most stretched state.Finally the subchain will rapidly restore to coil structure.According to the results of force analysis,the retarding force at the trans side is more crucial during the practical translocation.展开更多
In this paper, the impact of the viaduct on flow and traffic exhausting particles dispersion within urban street canyons was numerically simulated using a computational fluid dynamics (CFD) model. Two-dimensional fl...In this paper, the impact of the viaduct on flow and traffic exhausting particles dispersion within urban street canyons was numerically simulated using a computational fluid dynamics (CFD) model. Two-dimensional flow and dispersion of particles from traffic exhausts were modeled using the standard k-e turbulence model. The street canyons with a viaduct at different widths and different heights above the ground are simulated. The results show that the airflow in street canyon is evidently in- fluenced by the viaduct: The position of the main vortex center is changed, especially there are two strong vortexes when the viaduct is placed at 10 m height above the ground. It is found based on the study of the particles number concentrations (PNCs) that the viaduct may mitigate the pollution level in the street canyon sometimes. The impact of the viaduct width on PNCs is stronger than that of the height. The study of PNDs reveals that the mean PNCs at the wall of upwind building increase when a viaduct is placed in street canyon. In addition, it is found based on the study of mean particles residence time (PRT) that the removal of the particles strongly correlates to the mean PNCs. The results indicate that the viaduct is an important factor to influence the flow patterns and particles dispersion in street canyons.展开更多
In this paper, analytical and numerical studies are carried out on the full annular rub motions of a nonlinear Jeffcott rotor. Transition sets of the synchronous full annular rub are given with the help of averaging m...In this paper, analytical and numerical studies are carried out on the full annular rub motions of a nonlinear Jeffcott rotor. Transition sets of the synchronous full annular rub are given with the help of averaging method and constraint bifurcation theory to discuss the effects of system parameters on jump phenomena. Routh-Hurwitz criteria are employed to analyze the stability of synchronous full annular rub solution and determine the boundaries of static and Hopf bifurcations. Finally, the response and onset condition of reverse dry whip are investigated numerically, and at the same time, the influences of rotor parameters and rotation speed on the characteristics of the rotor response are investigated.展开更多
The thermal conductivity of complex fluid materials (dusty plasmas) has been explored through novel Evan-Gillan homogeneous non-equilibrium molecular dynamic (HNEMD) algorithm. The thermal conductivity coefficient...The thermal conductivity of complex fluid materials (dusty plasmas) has been explored through novel Evan-Gillan homogeneous non-equilibrium molecular dynamic (HNEMD) algorithm. The thermal conductivity coefficient obtained from HNEMD is dependent on various plasma parameters (T,k). The proposed algorithm gives accurate results with fast convergence and small size effect over a wide range of plasma parameters. The cross microscopic heat energy current is discussed in association with variation of temperature (1/Г) and external perturbations (Pz). The thermal conductivity obtained from HNEMD simulations is found to be very good agreement and more reliable than previously known numerical techniques of equilibrium molecular dynarnic, nonequilibrium molecular dynamic simulations. Our new investigations point to an effective conclusion that the thermal conductivity of complex dusty plasmas is dependent on an extensive range of plasma coupling (P) and screening parameter (k) and it varies by the alteration in these parameters. It is also shown that a different approach is used for computations of thermal conductivity in 2D complex plasmas and can be appropriate method for behaviors of complex systems.展开更多
Based on the theory of nonlocal elasticity,a nonlocal shell model accounting for the small scale effect is developed for the bending characteristics of CNTs subjected to the concentrated load.With this nonlocal shell ...Based on the theory of nonlocal elasticity,a nonlocal shell model accounting for the small scale effect is developed for the bending characteristics of CNTs subjected to the concentrated load.With this nonlocal shell model,explicit expressions are derived for the bending solutions.To extract the proper values of nonlocal scale parameter,we have made molecular dynamics(MD) simulations for various radii and lengths of armchair and zigzag CNTs,the results of which are matched with those of nonlocal continuum model.It is found that the present nonlocal elastic shell model with its appropriate values of nonlocal scale parameter has the capability to predict the bending behavior of CNTs,which is comparable with the results of MD simulations.Moreover,exact closed form solutions for the nonlocal scale parameter for zigzag and armchair CNTs are obtained.The results show that nonlocal scale parameter is independent of the length of CNTs,and dependent on the radius of CNTs.展开更多
The Ga N based blue light emitting diodes(LEDs) with a thin Al In N layer inserted in front of the electron blocking layer(EBL) are experimentally studied.It is found that inserting a thin EBL can improve the light ou...The Ga N based blue light emitting diodes(LEDs) with a thin Al In N layer inserted in front of the electron blocking layer(EBL) are experimentally studied.It is found that inserting a thin EBL can improve the light output power and reduce the efficiency droop compared with the conventional Al Ga N counterparts.Based on numerical simulation and analysis,the improvement on the electrical and optical characteristics is mainly attributed to the reduction of the electron leakage current,which increases the concentration of carriers in the quantum well(QW) when the thin Al In N layer is used.展开更多
文摘The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.
文摘Molecular dynamics simulations were carried out to study the configuration energy and radial distribution functions of mmonium dihydrogen phosphate solution at different temperatures. The dihydrogen phosphate ion was treated as a seven-site model and the ammonium ion was regarded as a five-site model, while a simple-point-charge model for water molecule. An unusually local particle number density fluctuation was observed in the system at saturation temperature. It can be found that the potential energy increases slowly with the temperature from 373 K to 404 K, which indicates that the ammonium dihydrogen phosphate has partly decomposed. The radial distribution function between the hydrogen atom of ammonium cation and the oxygen atom of dihydrogen phosphate ion at three different temperatures shows obvious difference, which indicates that the average H-bond number changes obviously with the temperature. The temperature has an influence on the combination between hydrogen atoms and phosphorus atoms of dihydrogen phosphate ion and there are much more growth units at saturated solutions.
基金V. ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.U1304111), the Laboratory of Science and Technology on Combustion and Explosion (No.9140C3501021101), China Postdoctoral Science Foundation (No.2013M531361), and Jiangsu Planned Projects for Postdoctoral Research Funds (No.1201015B).
文摘Molecular dynamic simulation was employed to predict the melting points Tm of TNAD/HMX, TNAD/RDX, TNAD/DINA, and TNAD/DNP systems (tans-1,4,5,8- tetranitro-1,4,5,8-tetraazadacalin (TNAD), dinitropiperazine (DNP), cyclotetramethylenetetranitroamine (HMX), cyclotrimethylenetrinitramine (RDX), and N-nitrodihydroxyethylaminedinitrate (DINA)). Tm was determined from the inflexion point on the curve of mean specific volume vs. temperature. The result shows that the Tm values of TNAD/HMX, TNAD/RDX, and TNAD/DINA systems are 500, 536, and 488 K, respectively. The TNAD/DNP system has no obvious Tm value, which shows the system is insoluble. Using Tm, the solubility of the four systems was analyzed. The radial distribution functions of the four systems were analyzed and the main intermolecular forces between TNAD and other energetic components are short-range interactions. The better the solubility is, the stronger the intermoleenlar interaction is. In addition, the force field energy at different temperature was also analyzed to predict Tm of the four systems.
文摘Using molecular dynamics (MD) simulation, the diffusion of oxygen, methane, ammonia and carbon dioxide in water was simulated in the canonical NVT ensemble, and the diffusion coefficient was analyzed by the clustering method. By comparing to the conventional method (using the Einstein model) and the differentiation-interval variation method, we found that the results ob- tained by the clustering method used in this study are more close to the experimental values. This method proved to be more reason- able than the other two methods.
基金Project(51878164) supported by the National Natural Science Foundation of ChinaProjects(BK20180149, BK20161421) supported by the Natural Science Foundation of Jiangsu Province, ChinaProject(KFJ170106) supported by Changsha University of Science & Technology via Open Fund of National Engineering Laboratory of Highway Maintenance Technology, China。
文摘Black cotton soil in East Africa is not a stable engineering material for highway and railroad projects. Its strong swelling potential when it absorbs water causes distresses in subgrade of highway and railroad, and thus leads to failures of the projects. This paper presents study on the swelling characteristics of black cotton soil in East Africa. Lab tests were conducted to obtain its basic engineering properties, and the results show that black cotton soil contains high amount of montmorillonite and exchangeable cations and is strong expansive soil. Molecular modelling was exploited to further investigate water absorption ability of montmorillonite. Three different molecular models of montmorillonite were constructed and used for simulations, among which Types I and II montmorillonite represent the expansive soil montmorillonite in China, and Types II and III montmorillonite represent black cotton soil montmorillonite in East Africa. The results showed that the interlayer cations of Type III montmorillonite possessed the strongest water absorption ability based on analysis of radial distribution function(RDF) of cations. Interlayer compensatory cations of Na+ enhance the hydration ability of the other major cations, thus resulting in the strong swelling potential of East-Africa black cotton soil.
文摘To research the relationship between the elastic parameters and the molecular structures of nano hybrid polyhedral oligomeric silsesquioxanes (POSS) materials, the mechanical properties at different temperatures for three POSS polymers with different molecular architectures, polymerlized norbornene POSS homopolymer (PNPOSS, pedant architecture), γ- (2, 3 glycidoxy) propyl diaminoethane POSS polymer (GPDP, catena architecture) and trimethoxysilylcyelopentyl POSS polymer ( TSCP, cage - cage network architecture) were obtained by molecular dynamics simulations based on the Compass force-field. Results indicate that the moleculax architectures of the POSS polymers have great influence on the reinforced effects. The effect of the cage-cage network architecture is best, while that of the catena architecture takes second place and the pedant architecture has the least influence comparatively. The reinforced effects of the POSS monomers were examined. The influences of the temperatures on these effects were analyzed also. It may provide some basis for the reasonable applications of the excellent mechanical properties of the organic-inorganic nano-hybrid materials. It may also provide references for exploitation and design of the POSS materials.
基金Supported by the Natural Science Foundation of Zhejiang Province (No. 502047 and No. M503094)National Basic Research Program of China (No. 2003CB214500).
文摘A numerical method was developed to directly simulate the compressible, particle-laden turbulent jets.The fourth order compact finite difference schemes were used to discretize the space derivatives. The Lagrangian method was adopted to simulate the particle motion based on one-way coupling. It is found that the turbulent intensity profiles attain self-similar status in the jet downstream regions. At the Stokes number of 1, particles are concentrated largely in the outer boundaries of the large-scale vortex structures with the most uneven distribution and the widest dispersion in the lateral direction. Particles at the much smaller Stokes numbers are distributed evenly in the flow field, and the lateral dispersion is also considerable. Distribution of particles at much larger Stokes numbers is more uniform and the lateral dispersion becomes small. In addition, the inflow conditions have different effects on the particle dispersion. The direct numerical simulation (DNS) results accord with the previous experiments and numerical studies.
基金the key Project of Chinese National Programs for Fundamental Research and Development (973 Program) (No.2010CB732301) for financial supports
文摘The diffusion of C4-24 alkanes, aromatics and cycloalkanes in FAU and MFI zeolites were studied systemati- cally by molecular simulation. The basic data on diffusion energy barriers and the diffusion characteristics of alkanes, cyclo- alkanes and aromatics in FAU and MFI zeolites were obtained. It was found out that the 12-member-ring openings between the two adjacent super cages limited the diffusion of hydrocarbons in FAU zeolites, and the hydrocarbon molecules diffused more easily in the intersections of MFI zeolite channels than in the straight channels between the intersections. It was more difficult for the molecules to diffuse in the sinusoidal channel of the MFI zeolite than in the straight channel because of the atoms at the comer of sinusoidal channel. The diffusion of three kinds of C6 alkanes was studied by gravity sorption method. The simulation results were well consistent with the experimental results, indicating that the simulation results were con- vincing.
基金Supported by the National Natural Science Foundation of China(No.29576250).
文摘A comprehensive study on various internal energies for the dipolar hard sphere fluids, including Stockmayer fluids, the mixtures of Lennard-Jones and Stockmayer and Stockmayer fluids and the electrolyte solutions is reported based on the perturbation theory and mean spherical approximation. Compared with the results of molecular simulations, it is shown that the perturbation theory is better than the mean spherical approximation.
基金Supported by the State Key Fundamental Research Plan (NO. G2000048) and the National High Performance Computing Foundation of China (No. 99118).
文摘Microscopic structure and diffusion properties of benzene in ambient water (298 K, 0.1 MPa) and super critical water (673-773 K, 25-35 MPa) are investigated by molecular dynamics simulation with site-site models. It is found that at the ambient condition, the water molecules surrounding a benzene molecule form a hydrogen bond network. The hydrogen bond interaction between supercritical water molecules decreases dramatically under supercritical conditions. The diffusion coefficients of both the solute molecule and solvent molecule at supercritical conditions increase by 30-180 times than those at the ambient condition. With the temperature approaching the critical temperature, the change of diffusion coefficient with pressure becomes pronounced.
文摘The Grand Canonical Monte Carlo(GCMC) simulation method was used to investigate the adsorption properties of quinoline homologues(quinoline, 2-methyl quinoline, and 2,4-dimethyl quinoline) on the FAU zeolite. The adsorption heat, adsorption isotherms, and adsorption sites of them were obtained. At the temperature ranging from 673.15 to 873.15 K, the Henry constant of quinoline homologues calculated on the FAU zeolite was applied to simulate their adsorption heat. And its value was more in accordance with the related data reported in the literature. The results showed that their isosteric heat decreased in the following order: 2,4-dimethyl quinoline(118.63 kJ/mol) > 2-methyl quinoline(110.45 kJ/mol) > quinoline(98 kJ/mol), and complied with the order of their adsorbate basicity. The competitive adsorption of three components of quinoline homologues on the FAU zeolite was calculated numerically at a temperature of 773.15 K and a pressure range of 0.1—100 MPa under the Universal force field. Their adsorption capacity decreased in the following order: quinoline > 2-methyl quinoline > 2,4-dimethyl quinoline. The smaller the molecule size of the adsorbate, the greater the saturated adsorption capacity would be. It was found that the quinoline homologues could be adsorbed in the main channels of 12- membered-ring framework of the zeolite. Simultaneously, the influence of silica/alumina ratio on the adsorption property of quinoline homologues in FAU zeolite was studied. The smaller the silica/alumina ratio, the greater the isosteric heat and adsorption capacity would be.
基金the National Science Foundation of China (NSFC) the China Petrochemical Corporation (SINOPEC) (No. 29792077).
文摘The grand canonical Monte Carlo (GCMC), the canonical Monte Carlo by using equal probability perturbation, and the molecular dynamics (MD) methods were used to study the capillary phase-transition (capillary condensation and evaporation) and self-diffusion for a simple Lennard-Jones model of ethylene confined in slit carbon pores of 2.109 nm at temperatures between 141.26 K and 201.80 K. The critical point of capillary phase-transition was extrapolated by the critical power law and the law of rectilinear diameter from the capillary phase-transition data in the near critical region. The effects of temperature and fluid density on the parallel self-diffusion coefficients of ethylene molecules confined in the slit carbon pores were examined. The results showed that the parallel selfdiffusion coefficients in the capillary phase transition area strongly depended on the fluids local densities in the slit carbon pores.
基金Supported by the National Natural Science Foundation of China (20736002, 20706013)the Open Project of the State Key Laboratory of Chemical Engineering ECUST (SKL-ChE-09C02)the Natural Science Fund of the Education Department of Anhui Province (KJ2011B116)
文摘The driven polymer translocation through a nanopore with unbiased initial configuration has been studied by using Langevin dynamics(LD) simulations.It is found that the scaling relationship between translocation time and the polymer chain length is strongly affected by the friction coefficient in LD and the driving force.However,there is no scaling relationship between the translocation time and the friction coefficient.The translocation time is almost inversely proportional to the driving force,which is in agreement with those obtained in biased translocation.The scaling relationship between gyration radius(R g) of subchain at the trans side with the subchain length(L) is R g ~L 0.33 that is in good agreement with the limiting value for molten globule state,while the curve of R g of subchain at the cis side has two distinct stages.During translocation,the subchain at the cis side is being stretched gradually,and the structure of the subchain transforms from sphere-like to rod-like.When the effect of stretching reaches the tail end,the subchain is at the most stretched state.Finally the subchain will rapidly restore to coil structure.According to the results of force analysis,the retarding force at the trans side is more crucial during the practical translocation.
基金supported by the Major Project of Knowledge Innovation Program of Chinese Academy of Sciences (Grant No.KJCX3.SYW.N3)the National Natural Science Foundation of China (Grant No.10675159)the Shanghai Natural Science Foundation (Grant No.09ZR1438200)
文摘In this paper, the impact of the viaduct on flow and traffic exhausting particles dispersion within urban street canyons was numerically simulated using a computational fluid dynamics (CFD) model. Two-dimensional flow and dispersion of particles from traffic exhausts were modeled using the standard k-e turbulence model. The street canyons with a viaduct at different widths and different heights above the ground are simulated. The results show that the airflow in street canyon is evidently in- fluenced by the viaduct: The position of the main vortex center is changed, especially there are two strong vortexes when the viaduct is placed at 10 m height above the ground. It is found based on the study of the particles number concentrations (PNCs) that the viaduct may mitigate the pollution level in the street canyon sometimes. The impact of the viaduct width on PNCs is stronger than that of the height. The study of PNDs reveals that the mean PNCs at the wall of upwind building increase when a viaduct is placed in street canyon. In addition, it is found based on the study of mean particles residence time (PRT) that the removal of the particles strongly correlates to the mean PNCs. The results indicate that the viaduct is an important factor to influence the flow patterns and particles dispersion in street canyons.
基金supported by the National Natural Science Foundation of China (Grant No. 10632040)
文摘In this paper, analytical and numerical studies are carried out on the full annular rub motions of a nonlinear Jeffcott rotor. Transition sets of the synchronous full annular rub are given with the help of averaging method and constraint bifurcation theory to discuss the effects of system parameters on jump phenomena. Routh-Hurwitz criteria are employed to analyze the stability of synchronous full annular rub solution and determine the boundaries of static and Hopf bifurcations. Finally, the response and onset condition of reverse dry whip are investigated numerically, and at the same time, the influences of rotor parameters and rotation speed on the characteristics of the rotor response are investigated.
文摘The thermal conductivity of complex fluid materials (dusty plasmas) has been explored through novel Evan-Gillan homogeneous non-equilibrium molecular dynamic (HNEMD) algorithm. The thermal conductivity coefficient obtained from HNEMD is dependent on various plasma parameters (T,k). The proposed algorithm gives accurate results with fast convergence and small size effect over a wide range of plasma parameters. The cross microscopic heat energy current is discussed in association with variation of temperature (1/Г) and external perturbations (Pz). The thermal conductivity obtained from HNEMD simulations is found to be very good agreement and more reliable than previously known numerical techniques of equilibrium molecular dynarnic, nonequilibrium molecular dynamic simulations. Our new investigations point to an effective conclusion that the thermal conductivity of complex dusty plasmas is dependent on an extensive range of plasma coupling (P) and screening parameter (k) and it varies by the alteration in these parameters. It is also shown that a different approach is used for computations of thermal conductivity in 2D complex plasmas and can be appropriate method for behaviors of complex systems.
基金supported by the National Natural Science Foundation of China (Grant No. 11132002)Guangdong Province (Grant No.10151064101000062)the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20110172110031)
文摘Based on the theory of nonlocal elasticity,a nonlocal shell model accounting for the small scale effect is developed for the bending characteristics of CNTs subjected to the concentrated load.With this nonlocal shell model,explicit expressions are derived for the bending solutions.To extract the proper values of nonlocal scale parameter,we have made molecular dynamics(MD) simulations for various radii and lengths of armchair and zigzag CNTs,the results of which are matched with those of nonlocal continuum model.It is found that the present nonlocal elastic shell model with its appropriate values of nonlocal scale parameter has the capability to predict the bending behavior of CNTs,which is comparable with the results of MD simulations.Moreover,exact closed form solutions for the nonlocal scale parameter for zigzag and armchair CNTs are obtained.The results show that nonlocal scale parameter is independent of the length of CNTs,and dependent on the radius of CNTs.
基金supported by the Key Scientific Research Project of Higher Education of Henan Province(No.15A510033)
文摘The Ga N based blue light emitting diodes(LEDs) with a thin Al In N layer inserted in front of the electron blocking layer(EBL) are experimentally studied.It is found that inserting a thin EBL can improve the light output power and reduce the efficiency droop compared with the conventional Al Ga N counterparts.Based on numerical simulation and analysis,the improvement on the electrical and optical characteristics is mainly attributed to the reduction of the electron leakage current,which increases the concentration of carriers in the quantum well(QW) when the thin Al In N layer is used.