期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
模拟肉制品加工条件下影响N-亚硝胺的形成因素 被引量:13
1
作者 杨华 孟培培 +1 位作者 王昌禄 马俪珍 《食品工业科技》 CAS CSCD 北大核心 2013年第16期95-99,共5页
为探讨肉制品加工条件下影响N-亚硝胺的形成因素,本实验模拟肉品加工条件,研究温度、pH、底物浓度之比对N-亚硝基二甲胺(NDMA)和N-亚硝基二乙胺(NDEA)形成的影响,以及pH、底物浓度对N-亚硝基吡咯烷(NPYR)形成的影响。结果表明,NDMA和NDE... 为探讨肉制品加工条件下影响N-亚硝胺的形成因素,本实验模拟肉品加工条件,研究温度、pH、底物浓度之比对N-亚硝基二甲胺(NDMA)和N-亚硝基二乙胺(NDEA)形成的影响,以及pH、底物浓度对N-亚硝基吡咯烷(NPYR)形成的影响。结果表明,NDMA和NDEA的形成量随着温度的升高而增加,随着pH的升高而降低:当温度大于80℃时,NDMA和NDEA的生成量显著增加(p<0.05);在pH5.4~6.2之间,降低速度较快,在pH6.2~7.0时,降低速度缓慢。随着pH的升高,由吡咯烷(PYR)生成NPYR的量变化不大(p>0.05),而由脯氨酸(Pro)生成NPYR的量则呈下降趋势(p<0.05)。二甲胺盐酸盐(DMA·HCl)与二乙胺盐酸盐(DEA·HCl)相比,DMA·HCl与NaNO2反应更容易形成N-亚硝胺,且均在低温肉制品加工温度下就可以形成;Pro与PYR相比,PYR与NaNO2反应更容易形成NPYR,且均在较高温度下才可以形成。上述四个反应中当NaNO2过量时更容易生成N-亚硝胺。实验结果表明,较高的温度、较低的pH、较高的亚硝酸钠可以促进N-亚硝胺的合成,因此在肉制品加工中应控制这些因素从而减少N-亚硝胺的生成。 展开更多
关键词 模拟加工条件 N-亚硝胺 影响因素
下载PDF
Modeling of Transient Thermal Conditions in Cutting
2
作者 T. Augspurger F. Klocke +3 位作者 B. Dobbeler M. Brockmann S. Gierlings A. Lima 《Journal of Mechanics Engineering and Automation》 2017年第3期113-119,共7页
The thermal conditions like the temperature distribution and the heat fluxes during metal cutting have a major influence on the machinability, the tool lifetime, the metallurgical structure and thus the functionality ... The thermal conditions like the temperature distribution and the heat fluxes during metal cutting have a major influence on the machinability, the tool lifetime, the metallurgical structure and thus the functionality of the work piece. This in particular applies for manufacturing processes like milling, drilling and turning for high-value turbomachinery components like impellers, combustion engines and compressors of the aerospace and automotive industry as well as energy generation, which play a major role in modern societies. However, numerous analytical and experimental efforts have been conducted in order to understand the thermal conditions in metal cutting, yet many questions still prevail. Most models are based on a stationary point of view and do not include time dependent effects like in intensity and distribution varying heat sources, varying engagement conditions and progressive tool wear. In order to cover such transient physics an analytical approach based on Green's functions for the solution of the partial differential equations of unsteady heat conduction in solids is used to model entire transient temperature fields. The validation of the model is carried out in orthogonal cutting experiments not only punctually but also for entire temperature fields. For these experiments an integrated measurement of prevailing cutting force and temperature fields in the tool and the chip by means of high-speed thermography were applied. The thermal images were analyzed with regard to thermodynamic energy balancing in order to derive the heat partition between tool, chips and workpiece. The thus calculated heat flow into the tool was subsequently used in order to analytically model the transient volumetric temperature fields in the tool. The described methodology enables the modeling of the transient thermal state in the cutting zone and particular in the tool, which is directly linked to phenomena like tool wear and workpiece surface modifications. 展开更多
关键词 Metal cutting infrared thermography heat sources transient temperature fields model based on Green's functions.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部