This paper is a contribution to the development of real time simulators for energy conversion research with respects to the "hardware in the loop simulation" concept. The focus is on the study of marine current kine...This paper is a contribution to the development of real time simulators for energy conversion research with respects to the "hardware in the loop simulation" concept. The focus is on the study of marine current kinetics energy conversion from into electrical energy using a marine current turbine simulator, developed in three stages. In the first stage the marine current turbine is emulated with the help of an induction drive who reproduces at its shaft the characteristics of a real turbine. It is connected with a load break used to force the emulator to respect on its shaft the characteristics of the real turbine. In the second stage, the induction drive is connected on the shaft with a doubly feed induction generator, for the study of energy conversion. The emulator respects the working regime, developed in the previous step, of a real turbine due to the control of the drive. In the third stage the induction machine emulating the turbine is interconnected with the generator and the load break. This assembly is used for the dynamic study of the marine current turbine. The break is used to create extra loads on the shaft and a variable inertial moment.展开更多
This paper presents modified version of a realistic test tool suitable to Design For Testability (DFT) and Built-ln Self Test (BIST) environments. A comprehensive tool is developed in the form of a test simulator....This paper presents modified version of a realistic test tool suitable to Design For Testability (DFT) and Built-ln Self Test (BIST) environments. A comprehensive tool is developed in the form of a test simulator. The simulator is capable of providing a required goal of test for the Circuit Under Test (CUT). The simulator uses the approach of fault diagnostics with fault grading procedures to provide the optimum tests. The current version of the simulator embeds features of exhaustive and pseudo-random test generation schemes along with the search solutions of cost effective test goals. The simulator provides facilities of realizing all possible pseudo-random sequence generators with all possible combinations of seeds. The tool is developed on a common Personal Computer (PC) platform and hence no special software is required. Thereby, it is a low cost tool hence economical. The tool is very much suitable for determining realistic test sequences for a targeted goal of testing for any CUT. The developed tool incorporates flexible Graphical User Interface (GUI) procedures and can be operated without any special programming skill. The tool is debugged and tested with the results of many bench mark circuits. Further, this developed tool can be utilized for educational purposes for many courses such as fault-tolerant computing, fault diagnosis, digital electronics, and safe-reliable-testable digital logic designs.展开更多
文摘This paper is a contribution to the development of real time simulators for energy conversion research with respects to the "hardware in the loop simulation" concept. The focus is on the study of marine current kinetics energy conversion from into electrical energy using a marine current turbine simulator, developed in three stages. In the first stage the marine current turbine is emulated with the help of an induction drive who reproduces at its shaft the characteristics of a real turbine. It is connected with a load break used to force the emulator to respect on its shaft the characteristics of the real turbine. In the second stage, the induction drive is connected on the shaft with a doubly feed induction generator, for the study of energy conversion. The emulator respects the working regime, developed in the previous step, of a real turbine due to the control of the drive. In the third stage the induction machine emulating the turbine is interconnected with the generator and the load break. This assembly is used for the dynamic study of the marine current turbine. The break is used to create extra loads on the shaft and a variable inertial moment.
文摘This paper presents modified version of a realistic test tool suitable to Design For Testability (DFT) and Built-ln Self Test (BIST) environments. A comprehensive tool is developed in the form of a test simulator. The simulator is capable of providing a required goal of test for the Circuit Under Test (CUT). The simulator uses the approach of fault diagnostics with fault grading procedures to provide the optimum tests. The current version of the simulator embeds features of exhaustive and pseudo-random test generation schemes along with the search solutions of cost effective test goals. The simulator provides facilities of realizing all possible pseudo-random sequence generators with all possible combinations of seeds. The tool is developed on a common Personal Computer (PC) platform and hence no special software is required. Thereby, it is a low cost tool hence economical. The tool is very much suitable for determining realistic test sequences for a targeted goal of testing for any CUT. The developed tool incorporates flexible Graphical User Interface (GUI) procedures and can be operated without any special programming skill. The tool is debugged and tested with the results of many bench mark circuits. Further, this developed tool can be utilized for educational purposes for many courses such as fault-tolerant computing, fault diagnosis, digital electronics, and safe-reliable-testable digital logic designs.