It studied the behavior of transport and stability of TiO2 and SiO2 nanoparticles suspensions percolating through soil columns aiming at simulating municipal waste landfills covering soil layers performance. Experimen...It studied the behavior of transport and stability of TiO2 and SiO2 nanoparticles suspensions percolating through soil columns aiming at simulating municipal waste landfills covering soil layers performance. Experimental columns were constructed with landfill soils and water suspensions with nanoparticles percolation runs were carried out. The experimental columns were constructed with 100 mm and 200 mm of diameter and height, respectively. Outlet concentrations were measured along the percolation time using ICP-OES and nanoparticles tracking analyzer. It was observed that SiO2 nanoparticles acts as a stabilizer of TiO2 nanoparticles suspensions and promotes its transport through the soil columns, which simulates the conditions of the controlled landfills layers. The interaction of the suspensions of SiO2 nanoparticles with nanoparticles of TiO2, promote a high stability of the emulsions, which confers the high zeta potential present in SiO2 suspensions, promoting greater mobility and transport through the soil columns. The experimental results demonstrated that TiO2 nanoparticles were kept suspended, even after 10 days, which indicates good stability. It was observed that both TiO2 and SiO2 were kept in suspensions with negligible nanoparticles clustering and decantation. It was confirmed that the TiO2 and SiO2 of the outflow of soil columns are strongly affected by the soil pH, organic carbon and clay content of the soils. It was observed that the soil columns behave as a retention barrier for both TiO2 and SiO2 nanoparticles.展开更多
To analyze the water swelling characteristics of black cotton soil(BCS),X-ray fluorescence and X-ray diffraction characterizations were performed to investigate the chemical compositions and types of clay minerals in ...To analyze the water swelling characteristics of black cotton soil(BCS),X-ray fluorescence and X-ray diffraction characterizations were performed to investigate the chemical compositions and types of clay minerals in BCS.A montmorillonite crystal lattice was established to simulate the hydration of interlayer cations by applying the SPC/E potential energy model,universal force field,algorithm of charge balance,and periodic boundary.Results indicated that the main clay mineral found in the BCS was montmorillonite(32.6%)with small amounts of interstratified illite-montmorillonite(10.9%),illite(2.3%),and kaolinite(1.5%).The high expansive potential of BCS comes from the strong adsorption property of montmorillonite with a high content of magnesium and sodium ions to water molecules.The exchangeable cations of Na^(+)in BCS were only 3.73%,but they enhanced the adsorption capacity of clay to water molecules and accelerated the hydration of Mg^(2+)(47.1%)and Ca^(2+)(4.78%).The free swell index can be used as a classification index of the swelling potential of BCS.展开更多
Steam mining method was injecting hot steam into the borehole to heat the hydrate strata at the same time of depressurization mining,which could promote further decomposition and expand mining areas of gas hydrate. St...Steam mining method was injecting hot steam into the borehole to heat the hydrate strata at the same time of depressurization mining,which could promote further decomposition and expand mining areas of gas hydrate. Steam heat calculation would provide the basis for the design of heating device and the choice of the field test parameters. There were piping heat loss in the process of mining. The heat transfer of steam flowing in the pipe was steady,so the heat loss could be obtained easily by formula calculation. The power of stratum heating should be determined by numerical simulation for the process of heating was dynamic and the equations were usually nonlinear. The selected mining conditions were 500-millimeter mining radius,10 centigrade mining temperature and 180 centigrade steam temperature. Heat loss and best heating power,obtained by formula calculation and numerical simulation,were 21. 35 W/m and 20 kW.展开更多
文摘It studied the behavior of transport and stability of TiO2 and SiO2 nanoparticles suspensions percolating through soil columns aiming at simulating municipal waste landfills covering soil layers performance. Experimental columns were constructed with landfill soils and water suspensions with nanoparticles percolation runs were carried out. The experimental columns were constructed with 100 mm and 200 mm of diameter and height, respectively. Outlet concentrations were measured along the percolation time using ICP-OES and nanoparticles tracking analyzer. It was observed that SiO2 nanoparticles acts as a stabilizer of TiO2 nanoparticles suspensions and promotes its transport through the soil columns, which simulates the conditions of the controlled landfills layers. The interaction of the suspensions of SiO2 nanoparticles with nanoparticles of TiO2, promote a high stability of the emulsions, which confers the high zeta potential present in SiO2 suspensions, promoting greater mobility and transport through the soil columns. The experimental results demonstrated that TiO2 nanoparticles were kept suspended, even after 10 days, which indicates good stability. It was observed that both TiO2 and SiO2 were kept in suspensions with negligible nanoparticles clustering and decantation. It was confirmed that the TiO2 and SiO2 of the outflow of soil columns are strongly affected by the soil pH, organic carbon and clay content of the soils. It was observed that the soil columns behave as a retention barrier for both TiO2 and SiO2 nanoparticles.
基金The National Natural Science Foundation of China(No.51778139)Jiangsu Planned Projects for Postdoctoral Research Funds(No.2020Z422).
文摘To analyze the water swelling characteristics of black cotton soil(BCS),X-ray fluorescence and X-ray diffraction characterizations were performed to investigate the chemical compositions and types of clay minerals in BCS.A montmorillonite crystal lattice was established to simulate the hydration of interlayer cations by applying the SPC/E potential energy model,universal force field,algorithm of charge balance,and periodic boundary.Results indicated that the main clay mineral found in the BCS was montmorillonite(32.6%)with small amounts of interstratified illite-montmorillonite(10.9%),illite(2.3%),and kaolinite(1.5%).The high expansive potential of BCS comes from the strong adsorption property of montmorillonite with a high content of magnesium and sodium ions to water molecules.The exchangeable cations of Na^(+)in BCS were only 3.73%,but they enhanced the adsorption capacity of clay to water molecules and accelerated the hydration of Mg^(2+)(47.1%)and Ca^(2+)(4.78%).The free swell index can be used as a classification index of the swelling potential of BCS.
基金Supported by project of China Geological Surrey(No.GZHL20110326)
文摘Steam mining method was injecting hot steam into the borehole to heat the hydrate strata at the same time of depressurization mining,which could promote further decomposition and expand mining areas of gas hydrate. Steam heat calculation would provide the basis for the design of heating device and the choice of the field test parameters. There were piping heat loss in the process of mining. The heat transfer of steam flowing in the pipe was steady,so the heat loss could be obtained easily by formula calculation. The power of stratum heating should be determined by numerical simulation for the process of heating was dynamic and the equations were usually nonlinear. The selected mining conditions were 500-millimeter mining radius,10 centigrade mining temperature and 180 centigrade steam temperature. Heat loss and best heating power,obtained by formula calculation and numerical simulation,were 21. 35 W/m and 20 kW.