The Kaerqueka polymetallic deposit, Qinghai, China, is one of the typical skarn-type polymetallic ore deposits in the Qimantage metallogenic belt. The dynamic mechanism on the formation of the Kaerqueka polymetallic d...The Kaerqueka polymetallic deposit, Qinghai, China, is one of the typical skarn-type polymetallic ore deposits in the Qimantage metallogenic belt. The dynamic mechanism on the formation of the Kaerqueka polymetallic deposit is always an interesting topic of research. We used the finite difference method to model the mineralizing process of the chalcopyrite in this region with considering the field geological features, mineralogy and geochemistry. In particular, the modern mineralization theory was used to quantitatively estimate the related chemical reactions associated with the chalcopyrite formation in the Kaerqueka polymetallic deposit. The numerical results indicate that the hydrothermal fluid flow is a key controlling factor of mineralization in this area and the temperature gradient is the driving force of pore-fluid flow. The metallogenic temperature of chalcopyrite in the Kaerqueka polymetallic deposit is between 250 and 350 ℃. The corresponding computational results have been verified by the field observations. It has been further demonstrated that the simulation results of coupled models in the field of emerging computational geosciences can enhance our understanding of the ore-forming processes in this area.展开更多
The mylonites occurred in the fracture zones are studied by dynamically recrystallized quartz grains.The natural microstructures in mylonites are simulated and the deformation conditions of mylonitization are estimate...The mylonites occurred in the fracture zones are studied by dynamically recrystallized quartz grains.The natural microstructures in mylonites are simulated and the deformation conditions of mylonitization are estimated by fractal analysis,recrystallized grain size paleopiezometer and flow laws of quartzite.Depending on fractal analysis,the deformation temperature of mylonitization is approximately 600℃,which presents high greenschist facies to low amphibolite facies.The mylonitization occurred at differential stresses of 9.1--10.7MPa(lower limits).Compared with extrapolation of quartzite flow laws and estimates of fractal analysis,the strain rate of mylonitization is under 10-13.8/s.展开更多
基金Project(2017YFC0601503)supported by the National Key R&D Program of ChinaProjects(41872249,41472302,41772348)supported by the National Natural Science Foundation of China
文摘The Kaerqueka polymetallic deposit, Qinghai, China, is one of the typical skarn-type polymetallic ore deposits in the Qimantage metallogenic belt. The dynamic mechanism on the formation of the Kaerqueka polymetallic deposit is always an interesting topic of research. We used the finite difference method to model the mineralizing process of the chalcopyrite in this region with considering the field geological features, mineralogy and geochemistry. In particular, the modern mineralization theory was used to quantitatively estimate the related chemical reactions associated with the chalcopyrite formation in the Kaerqueka polymetallic deposit. The numerical results indicate that the hydrothermal fluid flow is a key controlling factor of mineralization in this area and the temperature gradient is the driving force of pore-fluid flow. The metallogenic temperature of chalcopyrite in the Kaerqueka polymetallic deposit is between 250 and 350 ℃. The corresponding computational results have been verified by the field observations. It has been further demonstrated that the simulation results of coupled models in the field of emerging computational geosciences can enhance our understanding of the ore-forming processes in this area.
基金Supported by Project of the Foundation of China Geological Survey(No.1212010071012)supported by the foundation of China Geological Survey Project(1212010071012)
文摘The mylonites occurred in the fracture zones are studied by dynamically recrystallized quartz grains.The natural microstructures in mylonites are simulated and the deformation conditions of mylonitization are estimated by fractal analysis,recrystallized grain size paleopiezometer and flow laws of quartzite.Depending on fractal analysis,the deformation temperature of mylonitization is approximately 600℃,which presents high greenschist facies to low amphibolite facies.The mylonitization occurred at differential stresses of 9.1--10.7MPa(lower limits).Compared with extrapolation of quartzite flow laws and estimates of fractal analysis,the strain rate of mylonitization is under 10-13.8/s.