在抗原-抗体分子对接模拟所生成的大量计算生成构象中筛选出近天然结构,即接近真实情况的抗原-抗体结合模式。借鉴QSAR原理,定义抗原-抗体接触面描述符并利用Discovery Studio 4.5软件平台计算出各对接模拟构象的接触面描述符和能量参...在抗原-抗体分子对接模拟所生成的大量计算生成构象中筛选出近天然结构,即接近真实情况的抗原-抗体结合模式。借鉴QSAR原理,定义抗原-抗体接触面描述符并利用Discovery Studio 4.5软件平台计算出各对接模拟构象的接触面描述符和能量参数。构造训练集数据进行回归分析,建立预测对接模拟构象是否是近天然结构的数学模型。通过测试集和实际应用情况检验该数学模型。通过回归分析所建立的数学模型能够在成百上千的抗原-抗体对接模拟构象中有效筛选出其中的近天然结构,在测试集验证和4G7抗体结合模式预测应用中具有良好的表现,验证了该数学模型的有效性和实用性。经验性的抗原-抗体接触面特征如氢键密度、氨基酸对偏好性指数等以及能量参数能够共同有效表征近天然结构,所建立的数学模型有效增强了通过分子对接预测抗原-抗体结合模式的可行性。展开更多
To study the influence of slenderness on the axial compressive performance of autoclaved fly ash solid brick masonry columns, compression experiments were conducted on 12 samples of autoclaved fly ash solid brick maso...To study the influence of slenderness on the axial compressive performance of autoclaved fly ash solid brick masonry columns, compression experiments were conducted on 12 samples of autoclaved fly ash solid brick masonry column and 4 samples of fired clay brick masonry column. The damage patterns and compressive performance were compared and analyzed. The experimental results indicate that the compressive bearing capacity decreases as slenderness increases from 3 to 18, and the compressive bearing capacity of the autoclaved fly ash solid brick masonry columns is lower than that of the fired clay brick masonry columns. The formulae for the axial compressive bearing capacity of autoclaved fly ash solid brick masonry columns were derived based on the experiments. The nonlinear FEA program ANSYS was adopted to simulate the behaviors of masonry columns. By comparing the simulation results and experimental results, it is shown that the simulation results agree well with the experimental ones. The rationality and applicability of the simulation results were verified.展开更多
Oxidative stress and diabetes have a tendency to alter protein, lipid, and DNA moieties. One of the strategic methods used to reduce diabetes-associated oxidative stress is to inhibit the carbohydrate-digesting enzyme...Oxidative stress and diabetes have a tendency to alter protein, lipid, and DNA moieties. One of the strategic methods used to reduce diabetes-associated oxidative stress is to inhibit the carbohydrate-digesting enzymes, thereby decreasing gastrointestinal glucose production. Plant-derived natural antioxidant molecules are considered a therapeutic tool in the treatment of oxidative stress and diabetes. The objective of this study was to identify tartary buckwheat rice flavonoids and evaluate the effect of in vitro digestion on their antioxidant and antidiabetic properties. High performance liquid chromatography(HPLC) analysis indicated the presence of rutin as a major component and quercitrin as a minor component of both digested and non-digested flavonoids. Both extracts showed a significant antioxidant capacity, but digested flavonoids showed reduced activity compared to non-digested. There were some decreases of the antioxidant activities(2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt(ABTS), 2,2-diphenyl-1-picrylhydrazy(DPPH) radical, and ferric reducing antioxidant power(FRAP)) of digested tartary buckwheat rice flavonoids compared with non-digested. Flavonoids from both groups significantly inhibited reactive oxygen species(ROS) production and α-glucosidase activity. Both digested and non-digested flavonoids markedly increased glucose consumption and glycogen content in Hep G2 cells. Tartary buckwheat rice flavonoids showed appreciable antioxidant and antidiabetic properties, even after digestion. Tartary buckwheat rice appears to be a promising functional food with potent antioxidant and antidiabetic properties.展开更多
Exothermic reactor is the main part in a chemical heat pump. It involves complex multi-component exothermal chemical reaction in catalyst-filled porous media. The lattice Boltzmann method (LBM) is developed to simulat...Exothermic reactor is the main part in a chemical heat pump. It involves complex multi-component exothermal chemical reaction in catalyst-filled porous media. The lattice Boltzmann method (LBM) is developed to simulate the characteristics of fluid flow, heat and mass transfer coupling chemical reaction in the exothermic reactor of the isopropanol/acetone/hydrogen chemical heat pump system. Fractal theory is used to structure a porous medium model in the reactor. The simulation results show that LBM is suitable for the simulation and the conversion has an optimal value with different inlet velocities.展开更多
文摘在抗原-抗体分子对接模拟所生成的大量计算生成构象中筛选出近天然结构,即接近真实情况的抗原-抗体结合模式。借鉴QSAR原理,定义抗原-抗体接触面描述符并利用Discovery Studio 4.5软件平台计算出各对接模拟构象的接触面描述符和能量参数。构造训练集数据进行回归分析,建立预测对接模拟构象是否是近天然结构的数学模型。通过测试集和实际应用情况检验该数学模型。通过回归分析所建立的数学模型能够在成百上千的抗原-抗体对接模拟构象中有效筛选出其中的近天然结构,在测试集验证和4G7抗体结合模式预测应用中具有良好的表现,验证了该数学模型的有效性和实用性。经验性的抗原-抗体接触面特征如氢键密度、氨基酸对偏好性指数等以及能量参数能够共同有效表征近天然结构,所建立的数学模型有效增强了通过分子对接预测抗原-抗体结合模式的可行性。
基金Supported by National Key Technology Research and Development Program (No.2008BAJ08B11-03)
文摘To study the influence of slenderness on the axial compressive performance of autoclaved fly ash solid brick masonry columns, compression experiments were conducted on 12 samples of autoclaved fly ash solid brick masonry column and 4 samples of fired clay brick masonry column. The damage patterns and compressive performance were compared and analyzed. The experimental results indicate that the compressive bearing capacity decreases as slenderness increases from 3 to 18, and the compressive bearing capacity of the autoclaved fly ash solid brick masonry columns is lower than that of the fired clay brick masonry columns. The formulae for the axial compressive bearing capacity of autoclaved fly ash solid brick masonry columns were derived based on the experiments. The nonlinear FEA program ANSYS was adopted to simulate the behaviors of masonry columns. By comparing the simulation results and experimental results, it is shown that the simulation results agree well with the experimental ones. The rationality and applicability of the simulation results were verified.
基金supported by the Beijing Municipal Science and Technology Plan(No.D151100004015002)the Research Foundation of the Education Department of Zhejiang Province(No.Y201328143),China
文摘Oxidative stress and diabetes have a tendency to alter protein, lipid, and DNA moieties. One of the strategic methods used to reduce diabetes-associated oxidative stress is to inhibit the carbohydrate-digesting enzymes, thereby decreasing gastrointestinal glucose production. Plant-derived natural antioxidant molecules are considered a therapeutic tool in the treatment of oxidative stress and diabetes. The objective of this study was to identify tartary buckwheat rice flavonoids and evaluate the effect of in vitro digestion on their antioxidant and antidiabetic properties. High performance liquid chromatography(HPLC) analysis indicated the presence of rutin as a major component and quercitrin as a minor component of both digested and non-digested flavonoids. Both extracts showed a significant antioxidant capacity, but digested flavonoids showed reduced activity compared to non-digested. There were some decreases of the antioxidant activities(2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt(ABTS), 2,2-diphenyl-1-picrylhydrazy(DPPH) radical, and ferric reducing antioxidant power(FRAP)) of digested tartary buckwheat rice flavonoids compared with non-digested. Flavonoids from both groups significantly inhibited reactive oxygen species(ROS) production and α-glucosidase activity. Both digested and non-digested flavonoids markedly increased glucose consumption and glycogen content in Hep G2 cells. Tartary buckwheat rice flavonoids showed appreciable antioxidant and antidiabetic properties, even after digestion. Tartary buckwheat rice appears to be a promising functional food with potent antioxidant and antidiabetic properties.
基金supported by the National Natural Science Foundation of China(Grant No.51106158)the National Basic Research Program of China(Grant No.2011CB710705)
文摘Exothermic reactor is the main part in a chemical heat pump. It involves complex multi-component exothermal chemical reaction in catalyst-filled porous media. The lattice Boltzmann method (LBM) is developed to simulate the characteristics of fluid flow, heat and mass transfer coupling chemical reaction in the exothermic reactor of the isopropanol/acetone/hydrogen chemical heat pump system. Fractal theory is used to structure a porous medium model in the reactor. The simulation results show that LBM is suitable for the simulation and the conversion has an optimal value with different inlet velocities.