The finite element method is used to simulate the rectification process of shield machine, to study the relationship between rectification moment and angle and to explore the influence laws of different soil parameter...The finite element method is used to simulate the rectification process of shield machine, to study the relationship between rectification moment and angle and to explore the influence laws of different soil parameters and buried depth on rectification moment. It is hoped that the reference value of rectification moment can be offered to operator, and theoretical foundation can be laid for future automatic rectification technology. The results show that the rectification moment and angle generally exhibit good linear behavior in clay layers with different soil parameters or buried depths, and then the concept of rectification coefficient, that is, the ratio of rectification angle to rectification moment, is proposed; different soil parameters and buried depths have different influences on rectification coefficient, in which elastic modulus has great influence but others have little influences; the simulations of rectification process are preformed in clay layers with different elastic modulus, and fitting results show that elastic modulus and rectification coefficient present the quadratic function relation.展开更多
Boundary conditions for the classical solution of the Terzaghi one-dimensional consolidation equation conflict with the equation's initial condition. As such, the classical initial-boundary value problem for the Terz...Boundary conditions for the classical solution of the Terzaghi one-dimensional consolidation equation conflict with the equation's initial condition. As such, the classical initial-boundary value problem for the Terzaghi one-dimensional consolidation equation is not well-posed. Moreover, the classical boundary conditions of the equation can only be applied to problems with either perfectly pervious or perfectly impervious boundaries. General boundary conditions are proposed to overcome these shortcomings and thus transfer the solution of the Terzaghi one-dimensional consolidation equation to a well-posed initial boundary value problem. The solution for proposed general boundary conditions is validated by comparing it to the classical solution. The actual field drainage conditions can be simulated by adjusting the values of parameters b and c given in the proposed general botmdary conditions. For relatively high coefficient of consolidation, just one term in series expansions is enough to obtain results with acceptable accuracy.展开更多
It is well-known that the IMC-PID controller tuning gives fast and improved set point response but slow disturbance rejection. A modification has been proposed in IMC-PID tuning rule for the improved disturbance rejec...It is well-known that the IMC-PID controller tuning gives fast and improved set point response but slow disturbance rejection. A modification has been proposed in IMC-PID tuning rule for the improved disturbance rejection. For the modified IMC-PID tuning rule, a method has been developed to obtain the IMC-PID setting in closed-loop mode without acquiring detailed information of the process. The proposed method is based on the closed-loop step set point experiment using a proportional only controller with gain K_(c0). It is the direct approach to find the PID controller setting similar to classical Ziegler-Nichols closed-loop method. Based on simulations of a wide range of first-order with delay processes, a simple correlation has been derived to obtain the modified IMC-PID controller settings from closed-loop experiment. In this method, controller gain is a function of the overshoot obtained in the closed loop set point experiment. The integral and derivative time is mainly a function of the time to reach the first peak(overshoot). Simulation has been conducted for the broad class of processes and the controllers were tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison. The PID controller settings obtained in the proposed tuning method show better performance and robustness with other two-step tuning methods for the broad class of processes. It has also been applied to temperature control loop in distillation column model. The result has been compared to the open loop tuning method where it gives robust and fast response.展开更多
The principle and process of parallel seismic (PS) testing for the integrity testing of cemented soil columns are in- troduced in this paper. A three-dimensional (3D) finite element model (FEM) for the pile-soil syste...The principle and process of parallel seismic (PS) testing for the integrity testing of cemented soil columns are in- troduced in this paper. A three-dimensional (3D) finite element model (FEM) for the pile-soil system is established for impulse responses. Under saturated soil or unsaturated soil condition, several vibrating velocity-time histories at different depths in parallel hole are obtained based on the numerical simulation. It shows that the length of the pile and the one-dimensional (1D) P-wave velocity in the pile can be determined easily from the features of the mentioned velocity-time histories. By examining the slopes of the first arrival time plotted versus depth or the depth where the amplitude of the first arrival significantly decreases, the length of the pile can be determined. The effects of the 3D P-wave propagation through the saturated soil and the defect of the cemented soil column on the velocity-time histories are also investigated.展开更多
A new artificial immune algorithm (AIA) simulating the biological immune network system with selfadjustment function is proposed in this paper. AIA is based on the modified immune network model in which two methods ...A new artificial immune algorithm (AIA) simulating the biological immune network system with selfadjustment function is proposed in this paper. AIA is based on the modified immune network model in which two methods of affinity measure evaluated are used, controlling the antibody diversity and the speed of convergence separately. The model proposed focuses on a systemic view of the immune system and takes into account cell-cell interactions denoted by antibody affinity. The antibody concentration defined in the immune network model is responsible directly for its activity in the immune system. The model introduces not only a term describing the network dynamics, but also proposes an independent term to simulate the dynamics of the antigen population. The antibodies' evolutionary processes are controlled in the algorithms by utilizing the basic properties of the immune network. Computational amount and effect is a pair of contradictions. In terms of this problem, the AIA regulating the parameters easily attains a compromise between them. At the same time, AIA can prevent premature convergence at the cost of a heavy computational amount (the iterative times). Simulation illustrates that AIA is adapted to solve optimization problems, emphasizing muhimodal optimization.展开更多
A detailed mathematical model of a direct internal reforming solid oxide fuel cell(DIR-SOFC) incorporating with simulation of chemical and physical processes in the fuel cell is presented. The model is developed based...A detailed mathematical model of a direct internal reforming solid oxide fuel cell(DIR-SOFC) incorporating with simulation of chemical and physical processes in the fuel cell is presented. The model is developed based on the reforming and electrochemical reaction mechanisms,mass and energy conservation,and heat transfer. A computational fluid dynamics(CFD) method is used for solving the complicated multiple partial differential equations(PDEs) to obtain the numerical approximations. The resulting distributions of chemical species concentrations,temperature and current density in a cross-flow DIR-SOFC are given and analyzed in detail. Further,the influence between distributions of chemical species concentrations,temperature and current density during the simulation is illustrated and discussed. The heat and mass transfer,and the kinetics of reforming and electrochemical reactions have significant effects on the parameter distributions within the cell. The results show the particular characteristics of the DIR-SOFC among fuel cells,and can aid in stack design and control.展开更多
A three-dimensional geometric model was set up for the oxidative coupling of methane(OCM) fixed bed reactor loaded with Na_3PO_4-Mn/SiO_2/cordierite monolithic catalyst,and an improved Stansch kinetic model was establ...A three-dimensional geometric model was set up for the oxidative coupling of methane(OCM) fixed bed reactor loaded with Na_3PO_4-Mn/SiO_2/cordierite monolithic catalyst,and an improved Stansch kinetic model was established to calculate the OCM reactions using the computational fluid dynamics method and Fluent software.The simulation conditions were completely the same with the experimental conditions that the volume velocity of the reactant is 80 ml·min^(-1) under standard state,the CH_4/O_2 ratio is 3 and the temperature and pressure is800 ℃ and 1 atm,respectively.The contour of the characteristic parameters in the catalyst bed was analyzed,such as the species mass fractions,temperature,the heat flux on side wall surface,pressure,fluid density and velocity.The results showed that the calculated values matched well with the experimental values on the conversion of CH4 and the selectivity of products(C_2H_6,C_2H_4,CO,CO_2 and H_2) in the reactor outlet with an error range of±4%.The mass fractions of CH_4 and O_2 decreased from 0.600 and 0.400 at the catalyst bed inlet to 0.445 and0.120 at the outlet,where the mass fractions of C_2H_6,C_2H_4,CO and CO_2 were 0.0245,0.0460,0.0537 and 0.116,respectively.Due to the existence of laminar boundary layer,the mass fraction contours of each species bent upwards in the vicinity of the boundary layer.The volume of OCM reaction was changing with the proceeding of reaction,and the total moles of products were greater than reactants.The flow field in the catalyst bed maintained constant temperature and pressure.The fluid density decreased gradually from 2.28 kg·m^(-3) at the inlet of the catalyst bed to 2.18 kg·m^(-3) at the outlet of the catalyst bed,while the average velocity magnitude increased from 0.108 m·s-1 to 0.120 m·s^(-1).展开更多
Here, we propose a simple scheme to realize a one-dimensional (1D) modulated Rice-Mele model (RMM) and investigate its topological properties with a 1D circuit quantum electrodynamics (QED) lattice. The system c...Here, we propose a simple scheme to realize a one-dimensional (1D) modulated Rice-Mele model (RMM) and investigate its topological properties with a 1D circuit quantum electrodynamics (QED) lattice. The system can be mapped into a Chern insulator model by introducing a period parameter. Interestingly and surprisingly, we found that the circuit-QED lattice system always exhibits topologically nonttrvial phases if both the nearest-neighbor hopping strength between two resonators and the qubitassisted on-site potentials are alternately changed in the direction of the lattice. The numerical results show that the topological phases can be obtained by introducing an additional modulation parameter and both the edge state and topological invariant can be unambiguously seen with the existence of decay and disorders, even with few resonators in the lattice.展开更多
Strongly swirl flow simulation are still under deve1oping. In this paper, ε equation based on the Renormalization. Group theory is used into algebraic stress model. Standard κ-ε model, algebraic stress model by Jia...Strongly swirl flow simulation are still under deve1oping. In this paper, ε equation based on the Renormalization. Group theory is used into algebraic stress model. Standard κ-ε model, algebraic stress model by Jiang Zhang[5]. and present model (RNG-ASM) are applied simultaneously to simulating the confined strongly swirling flow. The Simulating results by RNG-ASM model are compared to the results by other two model, it is shown that the predictions by this model display reasonable agreement with experimental data, and lead to gnater improvement than Zhang’s ASM turbulence model[5].展开更多
To improve the inlet performance of a ramjet working under variable conditions,a design is proposed by controlling the inlet with jet controlling,which combines the method of reducing the sealing Mach number of the ex...To improve the inlet performance of a ramjet working under variable conditions,a design is proposed by controlling the inlet with jet controlling,which combines the method of reducing the sealing Mach number of the external waves and the technique of controlling inlet by jet controlling.Three inlets were designed to analyze the feasibility and a numerical simulation method was used to simulate the three inlet flow fields.The adjustment mechanism of the design was studied through analysis of the simulation results.The design was verified by comparing the performances of the three inlets.The study showed that the method of reducing the sealing Mach number of the external wave system can improve the flow coefficient when the inlet works at low Mach numbers.The technique of controlling inlet by jet controlling can homogenize inlet flow fields at high Mach numbers,reduce effective throat area and increase the total pressure recovery(TPR).Adjustable inlets controlled by jet controlling demonstrate good performance at certain working ranges.展开更多
基金Project(2007CB714006)supported by the National Basic Research Program of China
文摘The finite element method is used to simulate the rectification process of shield machine, to study the relationship between rectification moment and angle and to explore the influence laws of different soil parameters and buried depth on rectification moment. It is hoped that the reference value of rectification moment can be offered to operator, and theoretical foundation can be laid for future automatic rectification technology. The results show that the rectification moment and angle generally exhibit good linear behavior in clay layers with different soil parameters or buried depths, and then the concept of rectification coefficient, that is, the ratio of rectification angle to rectification moment, is proposed; different soil parameters and buried depths have different influences on rectification coefficient, in which elastic modulus has great influence but others have little influences; the simulations of rectification process are preformed in clay layers with different elastic modulus, and fitting results show that elastic modulus and rectification coefficient present the quadratic function relation.
基金Foundation item: Project(50608038) supported by the National Natural Science Foundation of China
文摘Boundary conditions for the classical solution of the Terzaghi one-dimensional consolidation equation conflict with the equation's initial condition. As such, the classical initial-boundary value problem for the Terzaghi one-dimensional consolidation equation is not well-posed. Moreover, the classical boundary conditions of the equation can only be applied to problems with either perfectly pervious or perfectly impervious boundaries. General boundary conditions are proposed to overcome these shortcomings and thus transfer the solution of the Terzaghi one-dimensional consolidation equation to a well-posed initial boundary value problem. The solution for proposed general boundary conditions is validated by comparing it to the classical solution. The actual field drainage conditions can be simulated by adjusting the values of parameters b and c given in the proposed general botmdary conditions. For relatively high coefficient of consolidation, just one term in series expansions is enough to obtain results with acceptable accuracy.
基金the support provided by King Abdulaziz City for Science and Technology (KACST) through the Science & Technology Unit at King Fahd University of PetroleumMinerals (KFUPM) for funding this work through project number 11-ENE1643-04 as part of the Notional Science Technology and Innovation Plan
文摘It is well-known that the IMC-PID controller tuning gives fast and improved set point response but slow disturbance rejection. A modification has been proposed in IMC-PID tuning rule for the improved disturbance rejection. For the modified IMC-PID tuning rule, a method has been developed to obtain the IMC-PID setting in closed-loop mode without acquiring detailed information of the process. The proposed method is based on the closed-loop step set point experiment using a proportional only controller with gain K_(c0). It is the direct approach to find the PID controller setting similar to classical Ziegler-Nichols closed-loop method. Based on simulations of a wide range of first-order with delay processes, a simple correlation has been derived to obtain the modified IMC-PID controller settings from closed-loop experiment. In this method, controller gain is a function of the overshoot obtained in the closed loop set point experiment. The integral and derivative time is mainly a function of the time to reach the first peak(overshoot). Simulation has been conducted for the broad class of processes and the controllers were tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison. The PID controller settings obtained in the proposed tuning method show better performance and robustness with other two-step tuning methods for the broad class of processes. It has also been applied to temperature control loop in distillation column model. The result has been compared to the open loop tuning method where it gives robust and fast response.
基金Project (No. 50478022) supported by the National Natural Science Foundation of China
文摘The principle and process of parallel seismic (PS) testing for the integrity testing of cemented soil columns are in- troduced in this paper. A three-dimensional (3D) finite element model (FEM) for the pile-soil system is established for impulse responses. Under saturated soil or unsaturated soil condition, several vibrating velocity-time histories at different depths in parallel hole are obtained based on the numerical simulation. It shows that the length of the pile and the one-dimensional (1D) P-wave velocity in the pile can be determined easily from the features of the mentioned velocity-time histories. By examining the slopes of the first arrival time plotted versus depth or the depth where the amplitude of the first arrival significantly decreases, the length of the pile can be determined. The effects of the 3D P-wave propagation through the saturated soil and the defect of the cemented soil column on the velocity-time histories are also investigated.
文摘A new artificial immune algorithm (AIA) simulating the biological immune network system with selfadjustment function is proposed in this paper. AIA is based on the modified immune network model in which two methods of affinity measure evaluated are used, controlling the antibody diversity and the speed of convergence separately. The model proposed focuses on a systemic view of the immune system and takes into account cell-cell interactions denoted by antibody affinity. The antibody concentration defined in the immune network model is responsible directly for its activity in the immune system. The model introduces not only a term describing the network dynamics, but also proposes an independent term to simulate the dynamics of the antigen population. The antibodies' evolutionary processes are controlled in the algorithms by utilizing the basic properties of the immune network. Computational amount and effect is a pair of contradictions. In terms of this problem, the AIA regulating the parameters easily attains a compromise between them. At the same time, AIA can prevent premature convergence at the cost of a heavy computational amount (the iterative times). Simulation illustrates that AIA is adapted to solve optimization problems, emphasizing muhimodal optimization.
基金Project (No. 2006AA05Z148) supported by the Hi-Tech Research and Development Program (863) of China
文摘A detailed mathematical model of a direct internal reforming solid oxide fuel cell(DIR-SOFC) incorporating with simulation of chemical and physical processes in the fuel cell is presented. The model is developed based on the reforming and electrochemical reaction mechanisms,mass and energy conservation,and heat transfer. A computational fluid dynamics(CFD) method is used for solving the complicated multiple partial differential equations(PDEs) to obtain the numerical approximations. The resulting distributions of chemical species concentrations,temperature and current density in a cross-flow DIR-SOFC are given and analyzed in detail. Further,the influence between distributions of chemical species concentrations,temperature and current density during the simulation is illustrated and discussed. The heat and mass transfer,and the kinetics of reforming and electrochemical reactions have significant effects on the parameter distributions within the cell. The results show the particular characteristics of the DIR-SOFC among fuel cells,and can aid in stack design and control.
基金Supported by the National Basic Research Program of China(2005CB221405)
文摘A three-dimensional geometric model was set up for the oxidative coupling of methane(OCM) fixed bed reactor loaded with Na_3PO_4-Mn/SiO_2/cordierite monolithic catalyst,and an improved Stansch kinetic model was established to calculate the OCM reactions using the computational fluid dynamics method and Fluent software.The simulation conditions were completely the same with the experimental conditions that the volume velocity of the reactant is 80 ml·min^(-1) under standard state,the CH_4/O_2 ratio is 3 and the temperature and pressure is800 ℃ and 1 atm,respectively.The contour of the characteristic parameters in the catalyst bed was analyzed,such as the species mass fractions,temperature,the heat flux on side wall surface,pressure,fluid density and velocity.The results showed that the calculated values matched well with the experimental values on the conversion of CH4 and the selectivity of products(C_2H_6,C_2H_4,CO,CO_2 and H_2) in the reactor outlet with an error range of±4%.The mass fractions of CH_4 and O_2 decreased from 0.600 and 0.400 at the catalyst bed inlet to 0.445 and0.120 at the outlet,where the mass fractions of C_2H_6,C_2H_4,CO and CO_2 were 0.0245,0.0460,0.0537 and 0.116,respectively.Due to the existence of laminar boundary layer,the mass fraction contours of each species bent upwards in the vicinity of the boundary layer.The volume of OCM reaction was changing with the proceeding of reaction,and the total moles of products were greater than reactants.The flow field in the catalyst bed maintained constant temperature and pressure.The fluid density decreased gradually from 2.28 kg·m^(-3) at the inlet of the catalyst bed to 2.18 kg·m^(-3) at the outlet of the catalyst bed,while the average velocity magnitude increased from 0.108 m·s-1 to 0.120 m·s^(-1).
基金supported by the National Natural Science Foundation of China(Grant Nos.11465020,11264042,61465013,and 11564041)the Project of Jilin Science and Technology Development for Leading Talent of Science and Technology Innovation in Middle and Young and Team Project(Grant No.20160519022JH)
文摘Here, we propose a simple scheme to realize a one-dimensional (1D) modulated Rice-Mele model (RMM) and investigate its topological properties with a 1D circuit quantum electrodynamics (QED) lattice. The system can be mapped into a Chern insulator model by introducing a period parameter. Interestingly and surprisingly, we found that the circuit-QED lattice system always exhibits topologically nonttrvial phases if both the nearest-neighbor hopping strength between two resonators and the qubitassisted on-site potentials are alternately changed in the direction of the lattice. The numerical results show that the topological phases can be obtained by introducing an additional modulation parameter and both the edge state and topological invariant can be unambiguously seen with the existence of decay and disorders, even with few resonators in the lattice.
文摘Strongly swirl flow simulation are still under deve1oping. In this paper, ε equation based on the Renormalization. Group theory is used into algebraic stress model. Standard κ-ε model, algebraic stress model by Jiang Zhang[5]. and present model (RNG-ASM) are applied simultaneously to simulating the confined strongly swirling flow. The Simulating results by RNG-ASM model are compared to the results by other two model, it is shown that the predictions by this model display reasonable agreement with experimental data, and lead to gnater improvement than Zhang’s ASM turbulence model[5].
文摘To improve the inlet performance of a ramjet working under variable conditions,a design is proposed by controlling the inlet with jet controlling,which combines the method of reducing the sealing Mach number of the external waves and the technique of controlling inlet by jet controlling.Three inlets were designed to analyze the feasibility and a numerical simulation method was used to simulate the three inlet flow fields.The adjustment mechanism of the design was studied through analysis of the simulation results.The design was verified by comparing the performances of the three inlets.The study showed that the method of reducing the sealing Mach number of the external wave system can improve the flow coefficient when the inlet works at low Mach numbers.The technique of controlling inlet by jet controlling can homogenize inlet flow fields at high Mach numbers,reduce effective throat area and increase the total pressure recovery(TPR).Adjustable inlets controlled by jet controlling demonstrate good performance at certain working ranges.