A cloud-resolving model simulation of a mesoscale convective system (MCS) producing torrential rainfall is performed with the finest horizontal resolution of 444 m. It is shown that the model reproduces the observed...A cloud-resolving model simulation of a mesoscale convective system (MCS) producing torrential rainfall is performed with the finest horizontal resolution of 444 m. It is shown that the model reproduces the observed MCS, including its rainfall distribution and amounts, as well as the timing and location of leading rainbands and trailing stratiform clouds. Results show that discrete convective hot towers, shown in Vis5D at a scale of 2-5 kin, are triggered by evaporatively driven cold outflows converging with the high-θe air ahead. Then, they move rearward, with respect to the leading rainbands, to form stratiform clouds. These convective towers generate vortical tubes of opposite signs, with more intense cyclonic vorticity occurring in the leading convergence zone. The results appear to have important implications for the improvement of summertime quantitative precipitation forecasts and the understanding of vortical hot towers, as well midlevel mesoscale convective vortices.展开更多
Daniau Village in Daniau Creek Watershed, Taitung County, Taiwan, sustained damages from landslides and mudflows during Typhoon Morakot in 2009. The purpose of this study is to adopt the FLO-2D numerical model recogni...Daniau Village in Daniau Creek Watershed, Taitung County, Taiwan, sustained damages from landslides and mudflows during Typhoon Morakot in 2009. The purpose of this study is to adopt the FLO-2D numerical model recognized by Federal Emergency Management Agency (FEMA) to simulate the mudflow, and the Daniau Village was used as a case study, along with rainfall and digital terrain data for this simulation. On the basis of sediment yields, the residual sediment volume in the landslide area was determined to be 33,276 ma by comparison of digital elevation models (DEMs) and by using the universal soil loss equation (USLE). In addition, this study performed a hydrological frequency analysis of rainfall to estimate the flow discharge as conditions of the simulation. Results of disaster surveys were collected to compare with outputs of the numerical model. Results of the simulation conducted with FLO- 2D indicated that if the countermeasure was not destroyed, the drainage work would function without overflow. This study aimed to review the effectiveness of eountermeasure on the basis of simulation results obtained by using the model to provide references for future disaster prevention and resident evacuation plans.展开更多
The Regional Integrated Environmental Model System (RIEMS 2.0) with NCEP Reanalysis II is utilized to simulate the severe freezing rain and snow storm event over southern China in January 2008, which caused severe d...The Regional Integrated Environmental Model System (RIEMS 2.0) with NCEP Reanalysis II is utilized to simulate the severe freezing rain and snow storm event over southern China in January 2008, which caused severe damage in the region. The relationships between the freezing rain process and the large-scale cir- culation, in terms of the westerly and low-level jets, water vapor transportation, and northerly wind area/intensity indices, were analyzed to tmderstand the mechanisms of the freezing rain occurrence. The results indicate the fol- lowing: (1) RIEMS 2.0 reproduced the pattern of precipi- tation in January 2008 well, especially for the temporal evolution of daily precipitation averaged over the Yangtze River valley and southern China; (2) RIEMS 2.0 repro- duced the persistent trough in the South Branch of the westerlies, of which the southwesterly currents trans- ported abundant moisture into southern China; (3) RIEMS 2.0 reasonably reproduced the pattern of frequencies of light and moderate rain, although it overestimated the frequency of rain in southern China. This study shows that RIEMS 2.0 can be feasibly applied to study extreme weather and climate events in East Asia.展开更多
基金supported by Jiangsu Education Science Foundation (Grant No.07KJB170065)Chinese National Science Foundation (Grant No.40775060)U.S.National Science Foundation (Grant No.ATM0758609)
文摘A cloud-resolving model simulation of a mesoscale convective system (MCS) producing torrential rainfall is performed with the finest horizontal resolution of 444 m. It is shown that the model reproduces the observed MCS, including its rainfall distribution and amounts, as well as the timing and location of leading rainbands and trailing stratiform clouds. Results show that discrete convective hot towers, shown in Vis5D at a scale of 2-5 kin, are triggered by evaporatively driven cold outflows converging with the high-θe air ahead. Then, they move rearward, with respect to the leading rainbands, to form stratiform clouds. These convective towers generate vortical tubes of opposite signs, with more intense cyclonic vorticity occurring in the leading convergence zone. The results appear to have important implications for the improvement of summertime quantitative precipitation forecasts and the understanding of vortical hot towers, as well midlevel mesoscale convective vortices.
基金supported in part by the National Science Council (NSC 97-2313-B-270-001-MY3) and Taitung Branch,Soil and Water Conservation Bureau, Council of Agriculture,Taiwan
文摘Daniau Village in Daniau Creek Watershed, Taitung County, Taiwan, sustained damages from landslides and mudflows during Typhoon Morakot in 2009. The purpose of this study is to adopt the FLO-2D numerical model recognized by Federal Emergency Management Agency (FEMA) to simulate the mudflow, and the Daniau Village was used as a case study, along with rainfall and digital terrain data for this simulation. On the basis of sediment yields, the residual sediment volume in the landslide area was determined to be 33,276 ma by comparison of digital elevation models (DEMs) and by using the universal soil loss equation (USLE). In addition, this study performed a hydrological frequency analysis of rainfall to estimate the flow discharge as conditions of the simulation. Results of disaster surveys were collected to compare with outputs of the numerical model. Results of the simulation conducted with FLO- 2D indicated that if the countermeasure was not destroyed, the drainage work would function without overflow. This study aimed to review the effectiveness of eountermeasure on the basis of simulation results obtained by using the model to provide references for future disaster prevention and resident evacuation plans.
基金supported by the National Basic Research Program of China (Grant Nos. 2010CB950900 and 2009CB421100)the National Natural Science Foundation of China (Grant No. 91025003)
文摘The Regional Integrated Environmental Model System (RIEMS 2.0) with NCEP Reanalysis II is utilized to simulate the severe freezing rain and snow storm event over southern China in January 2008, which caused severe damage in the region. The relationships between the freezing rain process and the large-scale cir- culation, in terms of the westerly and low-level jets, water vapor transportation, and northerly wind area/intensity indices, were analyzed to tmderstand the mechanisms of the freezing rain occurrence. The results indicate the fol- lowing: (1) RIEMS 2.0 reproduced the pattern of precipi- tation in January 2008 well, especially for the temporal evolution of daily precipitation averaged over the Yangtze River valley and southern China; (2) RIEMS 2.0 repro- duced the persistent trough in the South Branch of the westerlies, of which the southwesterly currents trans- ported abundant moisture into southern China; (3) RIEMS 2.0 reasonably reproduced the pattern of frequencies of light and moderate rain, although it overestimated the frequency of rain in southern China. This study shows that RIEMS 2.0 can be feasibly applied to study extreme weather and climate events in East Asia.