This paper shows that one-dimensional (I-D) [and three-dimensional (3-D) computational fluid dynamics (CFD)] simulations can replace the state-of-the-art usage of pseudo-homogeneous dispersion or back mixing mod...This paper shows that one-dimensional (I-D) [and three-dimensional (3-D) computational fluid dynamics (CFD)] simulations can replace the state-of-the-art usage of pseudo-homogeneous dispersion or back mixing models. This is based on standardized lab-scale cell experiments for the determination of droplet rise, breakage, coalescence and mass transfer parameters in addition to a limited number of additional mini-plant experiments with original fluids. Alternatively, the hydrodynamic parameters can also be derived using more sophisticated 3- D CFD simulations. Computational 1-D modeling served as a basis to replace pilot-plant experiments in any column geometry. The combination of 3-D CFD simulations with droplet population balance models (DPBM) increased the accuracy of the hydrodynamic simulations and gave information about the local droplet size. The high computational costs can be reduced by open source CFD codes when using a flexible mesh generation. First combined simulations using a three way coupled CFD/DPBM/mass-transfer solver pave the way for a safer design of industrial-sized columns, where no correlations are available.展开更多
A thorough understanding of bacteria transport in soil and groundwater is vital to the successful practice of environmental bioremediation.In this work,a dual-process adsorption with growth and decay model of bacteria...A thorough understanding of bacteria transport in soil and groundwater is vital to the successful practice of environmental bioremediation.In this work,a dual-process adsorption with growth and decay model of bacterial transport was proposed.The onsite soil and the high efficiency methyl tertbutyl ether (MTBE) degrading bacterium Chryseobacterium sp.A-3,was used in the experiments.The model was validated using one-dimensional soil column experiments.The results show that the dual-process adsorption with growth and decay model proposed well describes the migration mechanism of microorganisms in soil and groundwater environment.According to the model analysis and simulation,the bacterial transport is enhanced as flow velocity and inlet cell concentration increase.Compared with the contaminant MTBE,the bacteria show stronger transport capacity but the irreversible straining in soil prevents the bacteria from transporting longer than MTBE.The results have certain instructive significance to the insitu contamination remediation operation.展开更多
文摘This paper shows that one-dimensional (I-D) [and three-dimensional (3-D) computational fluid dynamics (CFD)] simulations can replace the state-of-the-art usage of pseudo-homogeneous dispersion or back mixing models. This is based on standardized lab-scale cell experiments for the determination of droplet rise, breakage, coalescence and mass transfer parameters in addition to a limited number of additional mini-plant experiments with original fluids. Alternatively, the hydrodynamic parameters can also be derived using more sophisticated 3- D CFD simulations. Computational 1-D modeling served as a basis to replace pilot-plant experiments in any column geometry. The combination of 3-D CFD simulations with droplet population balance models (DPBM) increased the accuracy of the hydrodynamic simulations and gave information about the local droplet size. The high computational costs can be reduced by open source CFD codes when using a flexible mesh generation. First combined simulations using a three way coupled CFD/DPBM/mass-transfer solver pave the way for a safer design of industrial-sized columns, where no correlations are available.
基金Supported by the National High Technology Research and Development Program of China(2009AA063102)
文摘A thorough understanding of bacteria transport in soil and groundwater is vital to the successful practice of environmental bioremediation.In this work,a dual-process adsorption with growth and decay model of bacterial transport was proposed.The onsite soil and the high efficiency methyl tertbutyl ether (MTBE) degrading bacterium Chryseobacterium sp.A-3,was used in the experiments.The model was validated using one-dimensional soil column experiments.The results show that the dual-process adsorption with growth and decay model proposed well describes the migration mechanism of microorganisms in soil and groundwater environment.According to the model analysis and simulation,the bacterial transport is enhanced as flow velocity and inlet cell concentration increase.Compared with the contaminant MTBE,the bacteria show stronger transport capacity but the irreversible straining in soil prevents the bacteria from transporting longer than MTBE.The results have certain instructive significance to the insitu contamination remediation operation.