The efficiency of chlorine and chloramines disinfection on biofilm development in a simulated drinking water distribution system was investigated by using heterotrophic bacterial spread plate technique. The experiment...The efficiency of chlorine and chloramines disinfection on biofilm development in a simulated drinking water distribution system was investigated by using heterotrophic bacterial spread plate technique. The experiments were carried out with four annular reactors (ARs) with stainless steel (SS) or copper (Cu) material slides. The results showed that there were fewer bacteria attached to Cu slides without a disinfectant compared with those attached to SS slides. When the water was disinfected with chloramines, the heterotrophic plate counts (HPCs) on the biofilm attached to the Cu slides were significantly lower (by 3.46 log CFU/cm2) than those attached to the SS slides. Likewise, the biofilm HPC numbers on the Cu slides were slightly lower (by 1.19 log CFU/cm2) than those on the SS slides disinfected with chlorine. In a quasi-steady state, the HPC levels on Cu slides can be reduced to 3.0 log CFU/cm2 with chlorine and to about 0.9 log CFU/cm2 with chloramines. The addition of chloramines resulted in a more efficient reduction of biofilm heterotrophic bacteria than did chlorine. We concluded that the chlorine and chloramines levels usually employed in water distribution system were not sufficient to prevent the growth and development of microbial biofilm. The combination of copper pipe slides and chloramines as the disinfectant was the most efficient combination to bring about diminished bacterial levels.展开更多
Binding of fluorescent molecules to the porous matrix through noncovalent interactions will synergistically expand their application spectrum. In this regard, we report an integrative self-assembly of molecule 1 with ...Binding of fluorescent molecules to the porous matrix through noncovalent interactions will synergistically expand their application spectrum. In this regard, we report an integrative self-assembly of molecule 1 with benzothiadizole and 9,9-dihexyl fluorene units, and covalent organic frameworks(COFs) via an emulsion-modulated polymerization process, within which molecules of 1 are able to interact with the scaffolds of COFs through CH-π interactions. Thus the π-πinteractions between the fluorescent molecules are largely suppressed, giving rise to their remarkable monomer-like optical properties. Of particular interest is that, given by the specific interaction between COFs and a nerve agent simulant diethyl chlorophosphite(DCP), these assembled composites show the ability of ultrasensitive detection of DCP with a detection limit of ~40 ppb. Moreover, the present integrative assembly strategy can be extended to encapsulate multiple fluorescent molecules, enabling the assemblies with white light emission. Our results highlight opportunities for the development of highly emissive porous materials by molecular selfassembly of fluorophores and molecular units of COFs.展开更多
基金supported by the National Natural Science Foundation of China (No. 50878164)the National Key Technologies Supporting Program of China during the 11th Five-Year Plan Period (Nos. 2006BAJ08B02 and 2006BAJ08B06)the Program for Young Excellent Talents in Tongji University (No. 2007KJ016), China
文摘The efficiency of chlorine and chloramines disinfection on biofilm development in a simulated drinking water distribution system was investigated by using heterotrophic bacterial spread plate technique. The experiments were carried out with four annular reactors (ARs) with stainless steel (SS) or copper (Cu) material slides. The results showed that there were fewer bacteria attached to Cu slides without a disinfectant compared with those attached to SS slides. When the water was disinfected with chloramines, the heterotrophic plate counts (HPCs) on the biofilm attached to the Cu slides were significantly lower (by 3.46 log CFU/cm2) than those attached to the SS slides. Likewise, the biofilm HPC numbers on the Cu slides were slightly lower (by 1.19 log CFU/cm2) than those on the SS slides disinfected with chlorine. In a quasi-steady state, the HPC levels on Cu slides can be reduced to 3.0 log CFU/cm2 with chlorine and to about 0.9 log CFU/cm2 with chloramines. The addition of chloramines resulted in a more efficient reduction of biofilm heterotrophic bacteria than did chlorine. We concluded that the chlorine and chloramines levels usually employed in water distribution system were not sufficient to prevent the growth and development of microbial biofilm. The combination of copper pipe slides and chloramines as the disinfectant was the most efficient combination to bring about diminished bacterial levels.
基金supported by the National Natural Science Foundation of China (21703120,21972076,51903140 and 21925604)China Postdoctoral Science Foundation (2019M662324)Taishan Scholars Program of Shandong Province (tsqn201812011)。
文摘Binding of fluorescent molecules to the porous matrix through noncovalent interactions will synergistically expand their application spectrum. In this regard, we report an integrative self-assembly of molecule 1 with benzothiadizole and 9,9-dihexyl fluorene units, and covalent organic frameworks(COFs) via an emulsion-modulated polymerization process, within which molecules of 1 are able to interact with the scaffolds of COFs through CH-π interactions. Thus the π-πinteractions between the fluorescent molecules are largely suppressed, giving rise to their remarkable monomer-like optical properties. Of particular interest is that, given by the specific interaction between COFs and a nerve agent simulant diethyl chlorophosphite(DCP), these assembled composites show the ability of ultrasensitive detection of DCP with a detection limit of ~40 ppb. Moreover, the present integrative assembly strategy can be extended to encapsulate multiple fluorescent molecules, enabling the assemblies with white light emission. Our results highlight opportunities for the development of highly emissive porous materials by molecular selfassembly of fluorophores and molecular units of COFs.