To study the influence of slenderness on the axial compressive performance of autoclaved fly ash solid brick masonry columns, compression experiments were conducted on 12 samples of autoclaved fly ash solid brick maso...To study the influence of slenderness on the axial compressive performance of autoclaved fly ash solid brick masonry columns, compression experiments were conducted on 12 samples of autoclaved fly ash solid brick masonry column and 4 samples of fired clay brick masonry column. The damage patterns and compressive performance were compared and analyzed. The experimental results indicate that the compressive bearing capacity decreases as slenderness increases from 3 to 18, and the compressive bearing capacity of the autoclaved fly ash solid brick masonry columns is lower than that of the fired clay brick masonry columns. The formulae for the axial compressive bearing capacity of autoclaved fly ash solid brick masonry columns were derived based on the experiments. The nonlinear FEA program ANSYS was adopted to simulate the behaviors of masonry columns. By comparing the simulation results and experimental results, it is shown that the simulation results agree well with the experimental ones. The rationality and applicability of the simulation results were verified.展开更多
This study presents the concept of a cyclone furnace for coal dust oxy-fuel combustion and gasification. The results of numerical calculations for the combustion and gasification processes were also presented.
基金Supported by National Key Technology Research and Development Program (No.2008BAJ08B11-03)
文摘To study the influence of slenderness on the axial compressive performance of autoclaved fly ash solid brick masonry columns, compression experiments were conducted on 12 samples of autoclaved fly ash solid brick masonry column and 4 samples of fired clay brick masonry column. The damage patterns and compressive performance were compared and analyzed. The experimental results indicate that the compressive bearing capacity decreases as slenderness increases from 3 to 18, and the compressive bearing capacity of the autoclaved fly ash solid brick masonry columns is lower than that of the fired clay brick masonry columns. The formulae for the axial compressive bearing capacity of autoclaved fly ash solid brick masonry columns were derived based on the experiments. The nonlinear FEA program ANSYS was adopted to simulate the behaviors of masonry columns. By comparing the simulation results and experimental results, it is shown that the simulation results agree well with the experimental ones. The rationality and applicability of the simulation results were verified.
文摘This study presents the concept of a cyclone furnace for coal dust oxy-fuel combustion and gasification. The results of numerical calculations for the combustion and gasification processes were also presented.