Computer simulation models are widely applied in various areas of the health care sector, including the spread of infectious diseases. Patch models involve explicit movements of people between distinct locations. The ...Computer simulation models are widely applied in various areas of the health care sector, including the spread of infectious diseases. Patch models involve explicit movements of people between distinct locations. The aim of the present work has been designed and explored a patch model with population mobility between different patches and between each patch and an external population. The authors considered a SIR (susceptible-infected-recovered) scheme. The model was explored by computer simulations. The results show how endemic levels are reached in all patches of the system. Furthermore, the performed explorations suggest that the people mobility between patches, the immigration from outside the system and the infection rate in each patch, are factors that may influence the dynamics of epidemics and should be considered in health policy planning.展开更多
文摘Computer simulation models are widely applied in various areas of the health care sector, including the spread of infectious diseases. Patch models involve explicit movements of people between distinct locations. The aim of the present work has been designed and explored a patch model with population mobility between different patches and between each patch and an external population. The authors considered a SIR (susceptible-infected-recovered) scheme. The model was explored by computer simulations. The results show how endemic levels are reached in all patches of the system. Furthermore, the performed explorations suggest that the people mobility between patches, the immigration from outside the system and the infection rate in each patch, are factors that may influence the dynamics of epidemics and should be considered in health policy planning.