CuO was synthesized by thermal decomposition of Cu(NO3)2·3H2O at various temperatures and characterized by powder X-ray diffractometry(XRD) as well as scanning electron microscopy(SEM).The effects of calcination ...CuO was synthesized by thermal decomposition of Cu(NO3)2·3H2O at various temperatures and characterized by powder X-ray diffractometry(XRD) as well as scanning electron microscopy(SEM).The effects of calcination temperature,category of sacrificial reagent,initial sacrificial reagent concentration,and Ag loading content on the photocatalytic activity of the as-obtained CuO sample were investigated.The results show that the as-obtained CuO exhibits high activity for photocatalysis of H2 evolution reaction(HER) in oxalic acid solution under simulated sunlight irradiation.The highest photocatalytic activity of the as-obtained CuO was achieved at the calcination temperature of 1000℃,and oxalic acid was used as the sacrificial reagent with the concentration 0.05 mol/L.H2 evolution rate is as high as 2.98 mmol/(h·g) with 2%(mass fraction) loaded Ag.The possible photocatalytic reaction mechanism on the CuO photocatalyst for HER in oxalic acid solution was also discussed.展开更多
Different physical, mechanical and chemical processes, such as: ion implantation, oxidation, nitridation and others create on the surface of materials residual stress state, characterized by high level and strong gra...Different physical, mechanical and chemical processes, such as: ion implantation, oxidation, nitridation and others create on the surface of materials residual stress state, characterized by high level and strong gradient. X-ray diffraction method widely used for stress measurements has some difficulties in interpretation of experimental data, when the depth of X-ray penetration is compared with thickness of surface layer where inhomogeneous stress distribution is localized. Early it has been shown by authors that diffraction line broadening occurs when analyzed surface is characterized by strong gradient. The interest to study the diffraction line broadening is connected to the possibility of obtaining information about parameters of surface stress distribution. In the present paper the convolution and deconvolution concepts of Fourier analysis were applied to study X ray diffraction line broadening caused by surface stress gradients. Developed methodology allows determining of stress distribution in superficial layers of materials.展开更多
Apatite coating with nanobelt structure was fabricated on single crystal silicon by a two-step method of electrodeposition at 1.0-2.0 mA/cm2 with DC power and vapor-thermal treatment(VTT) at 150-180℃ for 6 h over alk...Apatite coating with nanobelt structure was fabricated on single crystal silicon by a two-step method of electrodeposition at 1.0-2.0 mA/cm2 with DC power and vapor-thermal treatment(VTT) at 150-180℃ for 6 h over alkali medium.Scanning electron microscopy(SEM),X-ray diffractometry(XRD),and electron diffraction spectrometry(EDS) were employed to investigate the compositions and morphologies of specimens before or after vapor-thermal treatment.The results demonstrate that nanobelt crystals of coating,0.5-2 μm in width,100 nm in thickness,and 6-10 μm in length,are Ca-deficient apatite(CDA) with a mole ratio of Ca to P approximately of 1.60,which shows similarity of the nanobelt coating to inorganic phase in composition and to collagen in dimension appearing in human hard tissue.Induced nucleation and growth of bone-like apatite were observed on the nanobelt after soaking in a simulated body fluid(SBF) for 6 h and for 3 d,respectively,identifying that nanobelt has good ability for induction of bone-like apatite in SBF.展开更多
The electromagnetic forming is a procedure of high-speed processing,which favors the increase of the formability of some plastically deformed metals.In order to evaluate the capacity of some light metals,such as alumi...The electromagnetic forming is a procedure of high-speed processing,which favors the increase of the formability of some plastically deformed metals.In order to evaluate the capacity of some light metals,such as aluminum and its alloys,to be deformed through this procedure,it is useful to know the stress and strain state that occurs in the material during forming.In this work,the modeling of stresses and strains in electromagnetically deformed AlMn0.5Mg0.5 sheet was made.The modeling was achieved using the finite element method and it was verified through experimental tests.To determine the residual stresses,the X-ray diffraction method was used.The strains were established by measuring the displacements of the nodes in the network inscribed on the specimen by means of three coordinates measuring machine.A good agreement between the modeling results and experimental data was found.展开更多
基金Project(20876039) supported by the National Natural Science Foundation of ChinaProject(09JJ3023) supported by Natural Science Foundation of Hunan Province, China
文摘CuO was synthesized by thermal decomposition of Cu(NO3)2·3H2O at various temperatures and characterized by powder X-ray diffractometry(XRD) as well as scanning electron microscopy(SEM).The effects of calcination temperature,category of sacrificial reagent,initial sacrificial reagent concentration,and Ag loading content on the photocatalytic activity of the as-obtained CuO sample were investigated.The results show that the as-obtained CuO exhibits high activity for photocatalysis of H2 evolution reaction(HER) in oxalic acid solution under simulated sunlight irradiation.The highest photocatalytic activity of the as-obtained CuO was achieved at the calcination temperature of 1000℃,and oxalic acid was used as the sacrificial reagent with the concentration 0.05 mol/L.H2 evolution rate is as high as 2.98 mmol/(h·g) with 2%(mass fraction) loaded Ag.The possible photocatalytic reaction mechanism on the CuO photocatalyst for HER in oxalic acid solution was also discussed.
文摘Different physical, mechanical and chemical processes, such as: ion implantation, oxidation, nitridation and others create on the surface of materials residual stress state, characterized by high level and strong gradient. X-ray diffraction method widely used for stress measurements has some difficulties in interpretation of experimental data, when the depth of X-ray penetration is compared with thickness of surface layer where inhomogeneous stress distribution is localized. Early it has been shown by authors that diffraction line broadening occurs when analyzed surface is characterized by strong gradient. The interest to study the diffraction line broadening is connected to the possibility of obtaining information about parameters of surface stress distribution. In the present paper the convolution and deconvolution concepts of Fourier analysis were applied to study X ray diffraction line broadening caused by surface stress gradients. Developed methodology allows determining of stress distribution in superficial layers of materials.
基金Project(50702020) supported by the National Natural Science Foundation of China
文摘Apatite coating with nanobelt structure was fabricated on single crystal silicon by a two-step method of electrodeposition at 1.0-2.0 mA/cm2 with DC power and vapor-thermal treatment(VTT) at 150-180℃ for 6 h over alkali medium.Scanning electron microscopy(SEM),X-ray diffractometry(XRD),and electron diffraction spectrometry(EDS) were employed to investigate the compositions and morphologies of specimens before or after vapor-thermal treatment.The results demonstrate that nanobelt crystals of coating,0.5-2 μm in width,100 nm in thickness,and 6-10 μm in length,are Ca-deficient apatite(CDA) with a mole ratio of Ca to P approximately of 1.60,which shows similarity of the nanobelt coating to inorganic phase in composition and to collagen in dimension appearing in human hard tissue.Induced nucleation and growth of bone-like apatite were observed on the nanobelt after soaking in a simulated body fluid(SBF) for 6 h and for 3 d,respectively,identifying that nanobelt has good ability for induction of bone-like apatite in SBF.
文摘The electromagnetic forming is a procedure of high-speed processing,which favors the increase of the formability of some plastically deformed metals.In order to evaluate the capacity of some light metals,such as aluminum and its alloys,to be deformed through this procedure,it is useful to know the stress and strain state that occurs in the material during forming.In this work,the modeling of stresses and strains in electromagnetically deformed AlMn0.5Mg0.5 sheet was made.The modeling was achieved using the finite element method and it was verified through experimental tests.To determine the residual stresses,the X-ray diffraction method was used.The strains were established by measuring the displacements of the nodes in the network inscribed on the specimen by means of three coordinates measuring machine.A good agreement between the modeling results and experimental data was found.