We apply the newly proposed double absorbing boundary condition(DABC)(Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference(FD) modeling. In the DABC scheme, the local high...We apply the newly proposed double absorbing boundary condition(DABC)(Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference(FD) modeling. In the DABC scheme, the local high-order absorbing boundary condition is used on two parallel artificial boundaries, and thus double absorption is achieved. Using the general 2D acoustic wave propagation equations as an example, we use the DABC in seismic FD modeling, and discuss the derivation and implementation steps in detail. Compared with the perfectly matched layer(PML), the complexity decreases, and the stability and fl exibility improve. A homogeneous model and the SEG salt model are selected for numerical experiments. The results show that absorption using the DABC is considerably improved relative to the Clayton–Engquist boundary condition and nearly the same as that in the PML.展开更多
In the present study, a new approach is applied to the cavity prediction for two-dimensional (2D) hydrofoils by the potential based boundary element method (BEM). The boundary element method is treated with the so...In the present study, a new approach is applied to the cavity prediction for two-dimensional (2D) hydrofoils by the potential based boundary element method (BEM). The boundary element method is treated with the source and doublet distributions on the panel surface and cavity surface by usethe of the Dirichlet type boundary conditions. An iterative solution approach is used to determine the cavity shape on partially cavitating hydrofoils. In the case of a specified cavitation number and cavity length, the iterative solution method proceeds by addition or subtraction of a displacement thickness on the cavity surface of the hydrofoil. The appropriate cavity shape is obtained by the dynamic boundary condition of the cavity surface and the kinematic boundary condition of the whole foil surface including the cavity. For a given cavitation number the cavity length of the 2D hydrofoil is determined according to the minimum error criterion among different cavity lengths, which satisfies the dynamic boundary condition on the cavity surface. The NACA 16006, NACA 16012 and NACA 16015 hydrofoil sections are investigated for two angles of attack. The results are compared with other potential based boundary element codes, the PCPAN and a commercial CFD code (FLUENT). Consequently, it has been shown that the results obtained from the two dimensional approach are consistent with those obtained from the others.展开更多
A numerical approach was developed to analyze the transient behavior of towed cable during ac- tively controlled deployment/retrieval (DR).The cable motion is described by the lumped parameter method, its correspondin...A numerical approach was developed to analyze the transient behavior of towed cable during ac- tively controlled deployment/retrieval (DR).The cable motion is described by the lumped parameter method, its corresponding boundary conditions are presented.In view of its varying length during DR,two auxiliary arguments are introduced to describe its continuous varying length and discrete number of nodes(equations), the length is determined by the pay out(or reel-in) rate,which is then used to determine the node number by a logic relation.For the discrete mathematical model of towed cable,an algorithm was developed to deal with the discrete governing equations.The simulation results indicate that the cable experiences more com- plex motions due to its varying length,and tension fluctuates seriously in the startup and ending stage of deployment/retrieval.The effect of towing ship's motion in waves on cable during deployment/retrieval is also considered via numerical simulation.展开更多
The effect of viscosity and viscosity difference and boundary patterned slip on mixing in a micro mixer has been numerically studied using lattice Boltzmann method (LBM). The slip and no-slip ratio is not constant a...The effect of viscosity and viscosity difference and boundary patterned slip on mixing in a micro mixer has been numerically studied using lattice Boltzmann method (LBM). The slip and no-slip ratio is not constant and varies irregularly, and viscosity is altered by changing the relaxation time in LBE equation. The slip boundary condition is simulated by specular reflection boundary and the no-slip boundary condition is simulated by bounce back boundary. It has been found that it is feasible to optimize the micro mixer design by combining the viscosity effect and boundary patterned ratio altogether.展开更多
Using the latest reported homologous Chemokine receptors (PDB ID: 3ODU, 3OE0 and 3OE6) as templates, twenty models of angiotensin II (Ang II) type 1 (AT1) receptor (known as p30556) were generated by multiple...Using the latest reported homologous Chemokine receptors (PDB ID: 3ODU, 3OE0 and 3OE6) as templates, twenty models of angiotensin II (Ang II) type 1 (AT1) receptor (known as p30556) were generated by multiple templates homology modeling. According to the results of the initial validation of these twenty models, the model 0020 was finally chosen as the best one for further studies. Then, a 2 ns molecular dynamic (MD) simulation for model 0020 was conducted in normal saline (0.9%, w/F) under periodical boundary conditions, which was followed by docking studies of model 0020 with several existing AT1 receptor blockers (ARBs). The docking results reveal that model 0020 possesses good affinities with these docked ARBs which are in accordance with both the IC50 inhibitor values and their curative effects. The results also show more potent interactions between the model 0020 and its ARBs than those of ever reported results, such as hydrogen bonds, hydrophobic interactions, and especially cation-n interactions and π-π interactions which have never been reported before. This may reveal that the structure of the model 0020 is quite close to its real crystal structure and the model 0020 may have the potential to be used for structure based drug design:展开更多
An element-free Galerkin method(EFGM) is used to solve the two-dimensional(2D) ground penetrating radar(GPR)modelling problems, due to its simple pre-processing, the absence of elements and high accuracy. Different fr...An element-free Galerkin method(EFGM) is used to solve the two-dimensional(2D) ground penetrating radar(GPR)modelling problems, due to its simple pre-processing, the absence of elements and high accuracy. Different from element-based numerical methods, this approach makes nodes free from the elemental restraint and avoids the explicit mesh discretization. First, we derived the boundary value problem for the 2D GPR simulation problems. Second, a penalty function approach and a boundary condition truncated method were used to enforce the essential and the absorbing boundary conditions, respectively. A three-layered GPR model was used to verify our element-free approach. The numerical solutions show that our solutions have an excellent agreement with solutions of a finite element method(FEM). Then, we used the EFGM to simulate one more complex model to show its capability and limitations. Simulation results show that one obvious advantage of EFGM is the absence of element mesh, which makes the method very flexible. Due to the use of MLS fitting, a key feature of EFM, is that both the dependent variable and its gradient are continuous and have high precision.展开更多
Liquid flows in a particular sequence when it is poured out from an open-top receptacle. Since the sequence is hard to catch by experiment, a numerical simulation was performed in this pouring process with the moving ...Liquid flows in a particular sequence when it is poured out from an open-top receptacle. Since the sequence is hard to catch by experiment, a numerical simulation was performed in this pouring process with the moving particle semi-implicit (MPS) method. A modified solid-liquid boundary condition was verified and employed with a new definition of static liquid layers. The whole system was discretized by a set of particles and the liquid particles were marked and tracked in the pouring process. The flowing sequence of the liquid can be calculated by restoring the liquid particles back to their initial positions before it is poured. The mass transfer property is found to depend on the position of the rotation axis and the rotation speed, as well as the viscosity of the liquid. The mechanism of the flowing sequence results from a temporal vortex and its motion during the process. The character vortex is generated by the rotation of the container. The results reveal a principle for a versatile pouring process and may contribute to the applications in flowing control in many fields.展开更多
A direct numerical simulation of a turbulent mixing layer with the Reynolds number 500 and the convective Mach number 0.6 is performed and the results obtained are used to study the turbulent flow field and its genera...A direct numerical simulation of a turbulent mixing layer with the Reynolds number 500 and the convective Mach number 0.6 is performed and the results obtained are used to study the turbulent flow field and its generated noise.In the present simulation,the numerical techniques of absorbing buffer zones,artificial convection velocity and spatial filtering are used to achieve nonreflecting boundary conditions.The self-similarity is used to validate the present numerical simulations.The large-scale coherent structures are plotted together with the acoustic waves,which demonstrates the directivity of acoustic waves.The Lighthill's source and space-time correlations are further investigated.The main contributions to mixing noise are identified in terms of large-scale coherent structures,Lighthill's source and space-time correlations.展开更多
Heat and mass transfer between porous media and fluid is a complex coupling process, which is widely used in various fields of engineering applications, especially for natural and artificial fractures in oil and gas e...Heat and mass transfer between porous media and fluid is a complex coupling process, which is widely used in various fields of engineering applications, especially for natural and artificial fractures in oil and gas extraction. In this study, a new method is proposed to deal with the flow and heat transfer problem of steady flow in a fracture. The fluid flow in a fracture was described using the same method as Mohais, who considered a fracture as a channel with porous wall, and the perturbation method was used to solve the mathematical model. Unlike previous studies, the shear jump boundary condition proposed by Ochoa-Tapia and Whitaker was used at the interface between the fluid and porous media. The main methods were perturbation analysis and the application of shear jump boundary conditions. The influence of permeability, channel width, shear jump degree and effective dynamic viscosity on the flow and heat transfer in the channel was studied by analysing the analytical solution. The distribution of axial velocity in the channel with the change of the typical parameters and the sensitivity of the heat transfer was obtained.展开更多
This paper describes the numerical simulation of unsteady flows due to incoming wakes and/or varying back pressure,The solution method is based upon the one-step finite-volume TVD Lax-Wendroff scheme.Dual time-step ap...This paper describes the numerical simulation of unsteady flows due to incoming wakes and/or varying back pressure,The solution method is based upon the one-step finite-volume TVD Lax-Wendroff scheme.Dual time-step approach and multigrid algorithm are adopted to improve the computational efficiency of the baseline scheme.Numerical results for the transonic unsteady flow in a channel bump and the unsteady flow in a flat plate cascade and the VKI cascade are presented.展开更多
The authors introduce a new Large Eddy Simulation model in a channel, based on the projection on finite element spaces as filtering operation in its variationM form, for a given triangulation (Th)h〉0. The eddy visc...The authors introduce a new Large Eddy Simulation model in a channel, based on the projection on finite element spaces as filtering operation in its variationM form, for a given triangulation (Th)h〉0. The eddy viscosity is expressed in terms of the friction velocity in the boundary layer due to the wall, and is of a standard sub grid-model form outside the boundary layer. The mixing length scale is locally equal to the grid size. The computational domain is the channel without the linear sub-layer of the boundary layer. The no-slip boundary condition (or BC for short) is replaced by a Navier (BC) at the computational wall. Considering the steady state case, the authors show that the variational finite element model they have introduced, has a solution (Vh,Ph)h〉O that converges to a solution of the steady state Navier-Stokes equation with Navier BC.展开更多
Inertia theory and the finite element method are used to investigate the effect of marginal seas on coastal upwelling. In contrast to much previous research on wind-driven upwelling, this paper does not consider local...Inertia theory and the finite element method are used to investigate the effect of marginal seas on coastal upwelling. In contrast to much previous research on wind-driven upwelling, this paper does not consider localized wind effects, but focuses instead on temperature stratification, the slope of the continental shelf, and the background flow field. Finite element method, which is both faster and more robust than finite difference method in solving problems with complex boundary conditions, was developed to solve the partial differential equations that govern coastal upwelling. Our results demonstrate that the environment of the marginal sea plays an important role in coastal upwelling. First, the background flow at the outer boundary is the main driving force of upwelling. As the background flow strengthens, the overall velocity of cross-shelf flow increases and the horizontal scale of the upwelling front widens, and this is accompanied by the movement of the upwelling front further offshore. Second, temperature stratification determines the direction of cross-shelf flows, with strong stratification favoring a narrow and intense upwelling zone. Third, the slope of the continental shelf plays an important role in controlling the intensity of upwelling and the height that upwelling may reach: the steeper the slope, the lower height of the upwelling. An additional phenomenon that should be noted is upwelling separation, which occurs even without a local wind force in the nonlinear model.展开更多
基金supported by the National Nature Science Foundation of China(Grant No.U1262208)the Important National Science & Technology Specific Projects(Grant No.2011ZX05019-008)
文摘We apply the newly proposed double absorbing boundary condition(DABC)(Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference(FD) modeling. In the DABC scheme, the local high-order absorbing boundary condition is used on two parallel artificial boundaries, and thus double absorption is achieved. Using the general 2D acoustic wave propagation equations as an example, we use the DABC in seismic FD modeling, and discuss the derivation and implementation steps in detail. Compared with the perfectly matched layer(PML), the complexity decreases, and the stability and fl exibility improve. A homogeneous model and the SEG salt model are selected for numerical experiments. The results show that absorption using the DABC is considerably improved relative to the Clayton–Engquist boundary condition and nearly the same as that in the PML.
基金Supported by the Yildiz Technical University Scientific Research Projects Coordination Department.Project Number:2012-10-01 KAP 02
文摘In the present study, a new approach is applied to the cavity prediction for two-dimensional (2D) hydrofoils by the potential based boundary element method (BEM). The boundary element method is treated with the source and doublet distributions on the panel surface and cavity surface by usethe of the Dirichlet type boundary conditions. An iterative solution approach is used to determine the cavity shape on partially cavitating hydrofoils. In the case of a specified cavitation number and cavity length, the iterative solution method proceeds by addition or subtraction of a displacement thickness on the cavity surface of the hydrofoil. The appropriate cavity shape is obtained by the dynamic boundary condition of the cavity surface and the kinematic boundary condition of the whole foil surface including the cavity. For a given cavitation number the cavity length of the 2D hydrofoil is determined according to the minimum error criterion among different cavity lengths, which satisfies the dynamic boundary condition on the cavity surface. The NACA 16006, NACA 16012 and NACA 16015 hydrofoil sections are investigated for two angles of attack. The results are compared with other potential based boundary element codes, the PCPAN and a commercial CFD code (FLUENT). Consequently, it has been shown that the results obtained from the two dimensional approach are consistent with those obtained from the others.
文摘A numerical approach was developed to analyze the transient behavior of towed cable during ac- tively controlled deployment/retrieval (DR).The cable motion is described by the lumped parameter method, its corresponding boundary conditions are presented.In view of its varying length during DR,two auxiliary arguments are introduced to describe its continuous varying length and discrete number of nodes(equations), the length is determined by the pay out(or reel-in) rate,which is then used to determine the node number by a logic relation.For the discrete mathematical model of towed cable,an algorithm was developed to deal with the discrete governing equations.The simulation results indicate that the cable experiences more com- plex motions due to its varying length,and tension fluctuates seriously in the startup and ending stage of deployment/retrieval.The effect of towing ship's motion in waves on cable during deployment/retrieval is also considered via numerical simulation.
基金Supported by the National Natural Science Foundation of China under Grant No. 10932010the Natural Science Foundation of Zhejiang Province under Grant No. Y607425+1 种基金the Research Grants Council of the Government of the HKSAR under Grant No. PolyU5231/06EThe Hong Kong Polytechnic University under Grant No. G-Y84 is Gratefully Acknowledged
文摘The effect of viscosity and viscosity difference and boundary patterned slip on mixing in a micro mixer has been numerically studied using lattice Boltzmann method (LBM). The slip and no-slip ratio is not constant and varies irregularly, and viscosity is altered by changing the relaxation time in LBE equation. The slip boundary condition is simulated by specular reflection boundary and the no-slip boundary condition is simulated by bounce back boundary. It has been found that it is feasible to optimize the micro mixer design by combining the viscosity effect and boundary patterned ratio altogether.
基金Project(20876180)supported by the National Natural Science Foundation of China
文摘Using the latest reported homologous Chemokine receptors (PDB ID: 3ODU, 3OE0 and 3OE6) as templates, twenty models of angiotensin II (Ang II) type 1 (AT1) receptor (known as p30556) were generated by multiple templates homology modeling. According to the results of the initial validation of these twenty models, the model 0020 was finally chosen as the best one for further studies. Then, a 2 ns molecular dynamic (MD) simulation for model 0020 was conducted in normal saline (0.9%, w/F) under periodical boundary conditions, which was followed by docking studies of model 0020 with several existing AT1 receptor blockers (ARBs). The docking results reveal that model 0020 possesses good affinities with these docked ARBs which are in accordance with both the IC50 inhibitor values and their curative effects. The results also show more potent interactions between the model 0020 and its ARBs than those of ever reported results, such as hydrogen bonds, hydrophobic interactions, and especially cation-n interactions and π-π interactions which have never been reported before. This may reveal that the structure of the model 0020 is quite close to its real crystal structure and the model 0020 may have the potential to be used for structure based drug design:
基金Project(41074085)supported by the National Natural Science Foundation of ChinaProject(NCET-12-0551)supported by the Funds for New Century Excellent Talents in University,ChinaProject supported by Shenghua Yuying Program of Central South University,China
文摘An element-free Galerkin method(EFGM) is used to solve the two-dimensional(2D) ground penetrating radar(GPR)modelling problems, due to its simple pre-processing, the absence of elements and high accuracy. Different from element-based numerical methods, this approach makes nodes free from the elemental restraint and avoids the explicit mesh discretization. First, we derived the boundary value problem for the 2D GPR simulation problems. Second, a penalty function approach and a boundary condition truncated method were used to enforce the essential and the absorbing boundary conditions, respectively. A three-layered GPR model was used to verify our element-free approach. The numerical solutions show that our solutions have an excellent agreement with solutions of a finite element method(FEM). Then, we used the EFGM to simulate one more complex model to show its capability and limitations. Simulation results show that one obvious advantage of EFGM is the absence of element mesh, which makes the method very flexible. Due to the use of MLS fitting, a key feature of EFM, is that both the dependent variable and its gradient are continuous and have high precision.
基金supported by the National Natural Science Foundation of China (Grant No. 50725621)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20090201110059)
文摘Liquid flows in a particular sequence when it is poured out from an open-top receptacle. Since the sequence is hard to catch by experiment, a numerical simulation was performed in this pouring process with the moving particle semi-implicit (MPS) method. A modified solid-liquid boundary condition was verified and employed with a new definition of static liquid layers. The whole system was discretized by a set of particles and the liquid particles were marked and tracked in the pouring process. The flowing sequence of the liquid can be calculated by restoring the liquid particles back to their initial positions before it is poured. The mass transfer property is found to depend on the position of the rotation axis and the rotation speed, as well as the viscosity of the liquid. The mechanism of the flowing sequence results from a temporal vortex and its motion during the process. The character vortex is generated by the rotation of the container. The results reveal a principle for a versatile pouring process and may contribute to the applications in flowing control in many fields.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11232011 and 11021262)the National Basic Research Program of China (Grant No. 2013CB834100)(Nonlinear science)
文摘A direct numerical simulation of a turbulent mixing layer with the Reynolds number 500 and the convective Mach number 0.6 is performed and the results obtained are used to study the turbulent flow field and its generated noise.In the present simulation,the numerical techniques of absorbing buffer zones,artificial convection velocity and spatial filtering are used to achieve nonreflecting boundary conditions.The self-similarity is used to validate the present numerical simulations.The large-scale coherent structures are plotted together with the acoustic waves,which demonstrates the directivity of acoustic waves.The Lighthill's source and space-time correlations are further investigated.The main contributions to mixing noise are identified in terms of large-scale coherent structures,Lighthill's source and space-time correlations.
基金financially supported by National Natural Science Foundation of China(Grant No.51305238)
文摘Heat and mass transfer between porous media and fluid is a complex coupling process, which is widely used in various fields of engineering applications, especially for natural and artificial fractures in oil and gas extraction. In this study, a new method is proposed to deal with the flow and heat transfer problem of steady flow in a fracture. The fluid flow in a fracture was described using the same method as Mohais, who considered a fracture as a channel with porous wall, and the perturbation method was used to solve the mathematical model. Unlike previous studies, the shear jump boundary condition proposed by Ochoa-Tapia and Whitaker was used at the interface between the fluid and porous media. The main methods were perturbation analysis and the application of shear jump boundary conditions. The influence of permeability, channel width, shear jump degree and effective dynamic viscosity on the flow and heat transfer in the channel was studied by analysing the analytical solution. The distribution of axial velocity in the channel with the change of the typical parameters and the sensitivity of the heat transfer was obtained.
文摘This paper describes the numerical simulation of unsteady flows due to incoming wakes and/or varying back pressure,The solution method is based upon the one-step finite-volume TVD Lax-Wendroff scheme.Dual time-step approach and multigrid algorithm are adopted to improve the computational efficiency of the baseline scheme.Numerical results for the transonic unsteady flow in a channel bump and the unsteady flow in a flat plate cascade and the VKI cascade are presented.
基金Project supported by the Spanish Government and European Union FEDER Grant(No.MTM200907719)
文摘The authors introduce a new Large Eddy Simulation model in a channel, based on the projection on finite element spaces as filtering operation in its variationM form, for a given triangulation (Th)h〉0. The eddy viscosity is expressed in terms of the friction velocity in the boundary layer due to the wall, and is of a standard sub grid-model form outside the boundary layer. The mixing length scale is locally equal to the grid size. The computational domain is the channel without the linear sub-layer of the boundary layer. The no-slip boundary condition (or BC for short) is replaced by a Navier (BC) at the computational wall. Considering the steady state case, the authors show that the variational finite element model they have introduced, has a solution (Vh,Ph)h〉O that converges to a solution of the steady state Navier-Stokes equation with Navier BC.
基金supported by the National Basic Research Program of China(Grant No.2010CB950400)the program in National Marine Environmental Forecasting Center
文摘Inertia theory and the finite element method are used to investigate the effect of marginal seas on coastal upwelling. In contrast to much previous research on wind-driven upwelling, this paper does not consider localized wind effects, but focuses instead on temperature stratification, the slope of the continental shelf, and the background flow field. Finite element method, which is both faster and more robust than finite difference method in solving problems with complex boundary conditions, was developed to solve the partial differential equations that govern coastal upwelling. Our results demonstrate that the environment of the marginal sea plays an important role in coastal upwelling. First, the background flow at the outer boundary is the main driving force of upwelling. As the background flow strengthens, the overall velocity of cross-shelf flow increases and the horizontal scale of the upwelling front widens, and this is accompanied by the movement of the upwelling front further offshore. Second, temperature stratification determines the direction of cross-shelf flows, with strong stratification favoring a narrow and intense upwelling zone. Third, the slope of the continental shelf plays an important role in controlling the intensity of upwelling and the height that upwelling may reach: the steeper the slope, the lower height of the upwelling. An additional phenomenon that should be noted is upwelling separation, which occurs even without a local wind force in the nonlinear model.