In this study, the dependence of dust budgets on dust emission schemes is investigated through the simulation of dust storm events, which occurred during 14–25 March 2002, over East Asia, by the Weather Research and ...In this study, the dependence of dust budgets on dust emission schemes is investigated through the simulation of dust storm events, which occurred during 14–25 March 2002, over East Asia, by the Weather Research and Forecasting with Chemistry(WRF/Chem) model coupled with six dust emission schemes. Generally, this model can reasonably reproduce the spatial distribution of surface dust concentration; however, the simulated total dust budget differs significantly with different emission schemes. Moreover, uncertainties in the simulated dust budget vary among regions. It is suggested that the dust emission scheme affects the regional dust budget directly through its impact on the total emitted dust amount; however, the inflow and outflow of dust aerosols simulated by different schemes within a region also depend on the geographical location of the dust emission region. Furthermore, the size distribution of dust particles for a specific dust emission scheme has proven to be important for dust budget calculation due to the dependence of dust deposition amount on dust size distribution.展开更多
As dominant biomes,forests play an important and indispensable role in adjusting the global carbon balance under climate change.Therefore,there are scientific and political implications in investigating the carbon bud...As dominant biomes,forests play an important and indispensable role in adjusting the global carbon balance under climate change.Therefore,there are scientific and political implications in investigating the carbon budget of forest ecosystems and its response to climate change.Here we synthesized the most recent research progresses on the carbon cycle in terrestrial ecosystems,and applied an individual-based forest ecosystem carbon budget model for China(FORCCHN) to simulate the dynamics of the carbon fluxes of forest ecosystems in the northeastern China.The FORCCHN model was further improved and applied through adding variables and modules of precipitation(rainfall and snowfall) interception by tree crown,understory plants and litter.The results showed that the optimized FORCCHN model had a good performance in simulating the carbon budget of forest ecosystems in the northeastern China.From 1981 to 2002,the forests played a positive role in absorbing carbon dioxide.However,the capability of forest carbon sequestration had been gradually declining during the the same period.As for the average spatial distri-bution of net carbon budget,a majority of the regions were carbon sinks.Several scattered areas in the Heilongjiang Province and the Liaoning Province were identified as carbon sources.The net carbon budget was apparently more sensitive to an increase of air temperature than change of precipitation.展开更多
In order to minimize the harm caused by the instability of a planing craft, a motion prediction model is essential. This paper analyzed the feasibility of using an MGM(1,N) model in grey system theory to predict pla...In order to minimize the harm caused by the instability of a planing craft, a motion prediction model is essential. This paper analyzed the feasibility of using an MGM(1,N) model in grey system theory to predict planing craft motion and carried out the numerical simulation experiment. According to the characteristics of planing craft motion, a recurrence formula was proposed of the parameter matrix of an MGMfl,N) model. Using this formula, data can be updated in real-time without increasing computational complexity significantly. The results of numerical simulation show that using an MGM(1,N) model to predict planing motion is feasible and useful for prediction. So the method proposed in this study can reflect the planing craft motion mechanism successfully, and has rational and effective functions of forecasting and analyzing trends.展开更多
Basically on the multi-body system dynamics,the virtual prototype of the hydraulic shock absorber for the bench test is developed in the ADAMS environment.Dynamic behaviors of the absorber are studied by both computer...Basically on the multi-body system dynamics,the virtual prototype of the hydraulic shock absorber for the bench test is developed in the ADAMS environment.Dynamic behaviors of the absorber are studied by both computer simulation and real test.Numerical predictions of dynamic responses are produced by the established virtual prototype of the absorber and compared with experimental results.It has been shown from the comparison that the vibration behaviors of the prototype with hysteretic damping characteristics are considered to be more identical with the bench test results than those of the same prototype with piecewise linear damping properties are.The current virtual prototype of the shock absorber is correct and can be a developing terrace for the optimizing design of the absorber and matching capability of the whole car.展开更多
Charcoal gasification could mitigate the energetic problems in the rural zones since these regions have considerable amounts of wood, which is the base of such a fuel available. This paper presents some CFD (computat...Charcoal gasification could mitigate the energetic problems in the rural zones since these regions have considerable amounts of wood, which is the base of such a fuel available. This paper presents some CFD (computational fluid dynamic) predictions of the experimental results obtained from the fixed bed gasification of charcoal made in a pilot-scale downdraft reactor using air, which was designed and built by the Research Group in Clean Development Mechanisms and Energy Management, from the National University of Colombia. The quality of the syngas obtained from the process was evaluated through the CO and CO2 percentages measured in its composition. The performance at various air flow rates (measured at the system entrance, through an analog flow meter) is evaluated with the help of 11 thermocouples, which give the information to create a temperature profile, and three load cells to measure the solid fuel conversion rate. To simulate the process, the information from temperature profile, charcoal proximate analysis, air flow meter and load cells were taken as inputs and the syngas composition was obtained as the result from the calculation. The domain was defined as 2D with an axis-symmetric description, using quads as mesh elements. The calculation and results were performed in a CFD commercial code widely used for this type of simulations: ANSYS FLUENT. The predictions made by the software were validated with the experimental results obtained in the laboratory.展开更多
Objective Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),the causative agent for coronavirus disease 2019(COVID-19),is responsible for the recent global pandemic.As there are no effective drugs or vaccine...Objective Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),the causative agent for coronavirus disease 2019(COVID-19),is responsible for the recent global pandemic.As there are no effective drugs or vaccines available for SARS-CoV-2,we investigated the potential of flavonoids against SARS-CoV-2 main protease 6YNQ.Methods In silico molecular simulation study against SARS-CoV-2 main protease 6YNQ.Results Among the 21 selected flavonoids,rutin demonstrated the highest binding energy(−8.7 kcal/mol)and displayed perfect binding with the catalytic sites.Conclusions Our study demonstrates the inhibitory potential of flavonoids against SARS-CoV-2 main protease 6YNQ.These computational simulation studies support the hypothesis that flavonoids might be helpful for the treatment of COVID-19.展开更多
The objective of this work is to formulate and demonstrate the methodology of multi-models for improving the performance of existing advanced control strategies. Multiple models are used to capture the nonlinear proce...The objective of this work is to formulate and demonstrate the methodology of multi-models for improving the performance of existing advanced control strategies. Multiple models are used to capture the nonlinear process dynamics relating to gain and time constant variations. The multi-model strategy was implemented on several controllers such as Smith-Predictor using PI (Proportional-lntegral) and GPC (Generalized Predictive Control). Computer simulations and experiments were conducted on several nonlinear systems and compared to the original form of these controllers. The enhanced approach was tested on controlling the screw speed of an injection molding machine and temperature of a steel cylinder.展开更多
The mesoscopic modeling developed rapidly in the past three decades is a promising tool for predicting and understanding the microstructure evolution at grain scale.In this paper,the recent development of mesoscopic m...The mesoscopic modeling developed rapidly in the past three decades is a promising tool for predicting and understanding the microstructure evolution at grain scale.In this paper,the recent development of mesoscopic modeling and its application to microstructure evolution in steels is reviewed.Firstly,some representative computational models are briefly introduced,e.g.,the phase field model,the cellular automaton model and the Monte Carlo model.Then,the emphasis is put on the application of mesoscopic modeling of the complex features of microstructure evolution,including solidification,solid-state phase transformation,recrystallization and grain growth.Finally,some issues in the present mesoscopic modeling and its perspective are discussed.展开更多
Fast prediction of permeability directly from images enabled by image recognition neural networks is a novel pore-scale modeling method that has a great potential. This article presents a framework that includes (1) g...Fast prediction of permeability directly from images enabled by image recognition neural networks is a novel pore-scale modeling method that has a great potential. This article presents a framework that includes (1) generation of porous media samples,(2) computation of permeability via fluid dynamics simulations,(3) training of convolutional neural networks (CNN) with simulated data, and (4) validations against simulations. Comparison of machine learning results and the ground truths suggests excellent predictive performance across a wide range of porosities and pore geometries, especially for those with dilated pores. Owning to such heterogeneity, the permeability cannot be estimated using the conventional Kozeny–Carman approach. Computational time was reduced by several orders of magnitude compared to fluid dynamic simulations. We found that, by including physical parameters that are known to affect permeability into the neural network, the physics-informed CNN generated better results than regular CNN. However, improvements vary with implemented heterogeneity.展开更多
Dynamic simulation is one of the most complex and important computations for power systems researches.Traditional solutions based on normal Newton iterations almost all depend on evaluations of Jacobian matrixes,which...Dynamic simulation is one of the most complex and important computations for power systems researches.Traditional solutions based on normal Newton iterations almost all depend on evaluations of Jacobian matrixes,which increases the programming complexity of and limits the parallelizability of the whole simulation.In this paper,a new adaptive preconditioned Jacobian-free Newton-GMRES(m)method is proposed to be applied to dynamic simulations of power systems.This new method has totally Jacobian-free characteristics,which saves calculations and storages of Jacobian matrixes and features strong parallelizability.Moreover,several speedup strategies are introduced to enhance efficiency and parallelizability of overall computations.Numerical tests are carried out on IEEE standard test systems and results show that in series computing environment,simulations based on the proposed method have comparable speed to those based on classical Newton-Raphson methods.展开更多
In order to elucidate the broadband noise of fan,the numerical simulation of fan operating at two different rotational speeds is carried out using the three-dimensional unsteady Reynolds-averaged Navier-Stokes (URANS)...In order to elucidate the broadband noise of fan,the numerical simulation of fan operating at two different rotational speeds is carried out using the three-dimensional unsteady Reynolds-averaged Navier-Stokes (URANS) equations.The computed results are compared to experiment to estimate its accuracy and are found to show good agreement with experiment.A method is proposed to evaluate the turbulent kinetic energy in the framework of the Spalart-Allmaras one equation turbulence model.From the calculation results,the turbulent kinetic energy is visualized as the turbulence of the flow which leads to generate the broadband noise,and its noise sources are identified.展开更多
It is very necessary for investigation on mechanism of windblown sand movement to understand and find out effective measures of preventing and reducing windblown sand, This also deals with some general features and ho...It is very necessary for investigation on mechanism of windblown sand movement to understand and find out effective measures of preventing and reducing windblown sand, This also deals with some general features and hot spots in the scientific forelands. such as multi-scale problems. interactions among. multi-physical-fields, randomness and nonlinearity as well as complex systems. In recent years, a series of experiments in wind tunnels and theoretical modeling as well as computer simulation have been taken by our research group (the Laboratory of Environmental Mechanics on Windblown Sand Movement in Lanzhou University )in a cross-disciplinary (mechanics and geography) viewpoint. Several original and essential studies were explored such as the main regularities of charges on sand particles, the mechanisms of electric field in windblown sand flux, the effects induced by the electric field on the flux, the microwave propagations, the evolution process of windblown and flux under mutual couple interations among several physical fields, and the simulation of the main features of Aeolian sand ripples.展开更多
Bayesian model averaging(BMA) is a recently proposed statistical method for calibrating forecast ensembles from numerical weather models.However,successful implementation of BMA requires accurate estimates of the weig...Bayesian model averaging(BMA) is a recently proposed statistical method for calibrating forecast ensembles from numerical weather models.However,successful implementation of BMA requires accurate estimates of the weights and variances of the individual competing models in the ensemble.Two methods,namely the Expectation-Maximization(EM) and the Markov Chain Monte Carlo(MCMC) algorithms,are widely used for BMA model training.Both methods have their own respective strengths and weaknesses.In this paper,we first modify the BMA log-likelihood function with the aim of removing the addi-tional limitation that requires that the BMA weights add to one,and then use a limited memory quasi-Newtonian algorithm for solving the nonlinear optimization problem,thereby formulating a new approach for BMA(referred to as BMA-BFGS).Several groups of multi-model soil moisture simulation experiments from three land surface models show that the performance of BMA-BFGS is similar to the MCMC method in terms of simulation accuracy,and that both are superior to the EM algo-rithm.On the other hand,the computational cost of the BMA-BFGS algorithm is substantially less than for MCMC and is al-most equivalent to that for EM.展开更多
基金jointly supported by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA05110200)the International Science and Technology Cooperation Program of China(2011DFG23450)
文摘In this study, the dependence of dust budgets on dust emission schemes is investigated through the simulation of dust storm events, which occurred during 14–25 March 2002, over East Asia, by the Weather Research and Forecasting with Chemistry(WRF/Chem) model coupled with six dust emission schemes. Generally, this model can reasonably reproduce the spatial distribution of surface dust concentration; however, the simulated total dust budget differs significantly with different emission schemes. Moreover, uncertainties in the simulated dust budget vary among regions. It is suggested that the dust emission scheme affects the regional dust budget directly through its impact on the total emitted dust amount; however, the inflow and outflow of dust aerosols simulated by different schemes within a region also depend on the geographical location of the dust emission region. Furthermore, the size distribution of dust particles for a specific dust emission scheme has proven to be important for dust budget calculation due to the dependence of dust deposition amount on dust size distribution.
基金Under the auspices of National Natural Science Foundation of China (No.31101073)National Basic Research Program of China (No.2010CB950903)+1 种基金Special Fund for Meteorological-scientific Research in the Public Interest (No.GYHY201106020)Key Projects in National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (No.2011BAD32B01)
文摘As dominant biomes,forests play an important and indispensable role in adjusting the global carbon balance under climate change.Therefore,there are scientific and political implications in investigating the carbon budget of forest ecosystems and its response to climate change.Here we synthesized the most recent research progresses on the carbon cycle in terrestrial ecosystems,and applied an individual-based forest ecosystem carbon budget model for China(FORCCHN) to simulate the dynamics of the carbon fluxes of forest ecosystems in the northeastern China.The FORCCHN model was further improved and applied through adding variables and modules of precipitation(rainfall and snowfall) interception by tree crown,understory plants and litter.The results showed that the optimized FORCCHN model had a good performance in simulating the carbon budget of forest ecosystems in the northeastern China.From 1981 to 2002,the forests played a positive role in absorbing carbon dioxide.However,the capability of forest carbon sequestration had been gradually declining during the the same period.As for the average spatial distri-bution of net carbon budget,a majority of the regions were carbon sinks.Several scattered areas in the Heilongjiang Province and the Liaoning Province were identified as carbon sources.The net carbon budget was apparently more sensitive to an increase of air temperature than change of precipitation.
基金Supported by the Foundation of State Key Laboratory of Autonomous Underwater Vehicle, Harbin Engineering Universitythe Fundamental Research Funds for the Central Universities (HEUCFL20101113)
文摘In order to minimize the harm caused by the instability of a planing craft, a motion prediction model is essential. This paper analyzed the feasibility of using an MGM(1,N) model in grey system theory to predict planing craft motion and carried out the numerical simulation experiment. According to the characteristics of planing craft motion, a recurrence formula was proposed of the parameter matrix of an MGMfl,N) model. Using this formula, data can be updated in real-time without increasing computational complexity significantly. The results of numerical simulation show that using an MGM(1,N) model to predict planing motion is feasible and useful for prediction. So the method proposed in this study can reflect the planing craft motion mechanism successfully, and has rational and effective functions of forecasting and analyzing trends.
基金the Shanghai Administration of Education under Shanghai Key Disciplines Development Fund ProjectShanghai Automotive Technology Development Foundation under Contract NO.1 325 A
文摘Basically on the multi-body system dynamics,the virtual prototype of the hydraulic shock absorber for the bench test is developed in the ADAMS environment.Dynamic behaviors of the absorber are studied by both computer simulation and real test.Numerical predictions of dynamic responses are produced by the established virtual prototype of the absorber and compared with experimental results.It has been shown from the comparison that the vibration behaviors of the prototype with hysteretic damping characteristics are considered to be more identical with the bench test results than those of the same prototype with piecewise linear damping properties are.The current virtual prototype of the shock absorber is correct and can be a developing terrace for the optimizing design of the absorber and matching capability of the whole car.
文摘Charcoal gasification could mitigate the energetic problems in the rural zones since these regions have considerable amounts of wood, which is the base of such a fuel available. This paper presents some CFD (computational fluid dynamic) predictions of the experimental results obtained from the fixed bed gasification of charcoal made in a pilot-scale downdraft reactor using air, which was designed and built by the Research Group in Clean Development Mechanisms and Energy Management, from the National University of Colombia. The quality of the syngas obtained from the process was evaluated through the CO and CO2 percentages measured in its composition. The performance at various air flow rates (measured at the system entrance, through an analog flow meter) is evaluated with the help of 11 thermocouples, which give the information to create a temperature profile, and three load cells to measure the solid fuel conversion rate. To simulate the process, the information from temperature profile, charcoal proximate analysis, air flow meter and load cells were taken as inputs and the syngas composition was obtained as the result from the calculation. The domain was defined as 2D with an axis-symmetric description, using quads as mesh elements. The calculation and results were performed in a CFD commercial code widely used for this type of simulations: ANSYS FLUENT. The predictions made by the software were validated with the experimental results obtained in the laboratory.
文摘Objective Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),the causative agent for coronavirus disease 2019(COVID-19),is responsible for the recent global pandemic.As there are no effective drugs or vaccines available for SARS-CoV-2,we investigated the potential of flavonoids against SARS-CoV-2 main protease 6YNQ.Methods In silico molecular simulation study against SARS-CoV-2 main protease 6YNQ.Results Among the 21 selected flavonoids,rutin demonstrated the highest binding energy(−8.7 kcal/mol)and displayed perfect binding with the catalytic sites.Conclusions Our study demonstrates the inhibitory potential of flavonoids against SARS-CoV-2 main protease 6YNQ.These computational simulation studies support the hypothesis that flavonoids might be helpful for the treatment of COVID-19.
文摘The objective of this work is to formulate and demonstrate the methodology of multi-models for improving the performance of existing advanced control strategies. Multiple models are used to capture the nonlinear process dynamics relating to gain and time constant variations. The multi-model strategy was implemented on several controllers such as Smith-Predictor using PI (Proportional-lntegral) and GPC (Generalized Predictive Control). Computer simulations and experiments were conducted on several nonlinear systems and compared to the original form of these controllers. The enhanced approach was tested on controlling the screw speed of an injection molding machine and temperature of a steel cylinder.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50871109 and 51001096)
文摘The mesoscopic modeling developed rapidly in the past three decades is a promising tool for predicting and understanding the microstructure evolution at grain scale.In this paper,the recent development of mesoscopic modeling and its application to microstructure evolution in steels is reviewed.Firstly,some representative computational models are briefly introduced,e.g.,the phase field model,the cellular automaton model and the Monte Carlo model.Then,the emphasis is put on the application of mesoscopic modeling of the complex features of microstructure evolution,including solidification,solid-state phase transformation,recrystallization and grain growth.Finally,some issues in the present mesoscopic modeling and its perspective are discussed.
文摘Fast prediction of permeability directly from images enabled by image recognition neural networks is a novel pore-scale modeling method that has a great potential. This article presents a framework that includes (1) generation of porous media samples,(2) computation of permeability via fluid dynamics simulations,(3) training of convolutional neural networks (CNN) with simulated data, and (4) validations against simulations. Comparison of machine learning results and the ground truths suggests excellent predictive performance across a wide range of porosities and pore geometries, especially for those with dilated pores. Owning to such heterogeneity, the permeability cannot be estimated using the conventional Kozeny–Carman approach. Computational time was reduced by several orders of magnitude compared to fluid dynamic simulations. We found that, by including physical parameters that are known to affect permeability into the neural network, the physics-informed CNN generated better results than regular CNN. However, improvements vary with implemented heterogeneity.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51277104 and 51207076)the National High-Tech Research & Development Program of China ("863" Program) (Grant No.2012AA050217)+1 种基金the Postdoctoral Science Foundation of China (Grant No.2012M510441)Tsinghua University Initiative Scientific Research Program (Grant No. 20121087926)
文摘Dynamic simulation is one of the most complex and important computations for power systems researches.Traditional solutions based on normal Newton iterations almost all depend on evaluations of Jacobian matrixes,which increases the programming complexity of and limits the parallelizability of the whole simulation.In this paper,a new adaptive preconditioned Jacobian-free Newton-GMRES(m)method is proposed to be applied to dynamic simulations of power systems.This new method has totally Jacobian-free characteristics,which saves calculations and storages of Jacobian matrixes and features strong parallelizability.Moreover,several speedup strategies are introduced to enhance efficiency and parallelizability of overall computations.Numerical tests are carried out on IEEE standard test systems and results show that in series computing environment,simulations based on the proposed method have comparable speed to those based on classical Newton-Raphson methods.
基金carried out by IHI Corporation under the financial support from New Energy and Industrial Technology Development Organization (NEDO) as a part of "Research and Development of Environmentally Compatible Engine for Small Aircraft" in the civil aircraft basic technology program of Ministry of Economy,Trade and Industry,Japan
文摘In order to elucidate the broadband noise of fan,the numerical simulation of fan operating at two different rotational speeds is carried out using the three-dimensional unsteady Reynolds-averaged Navier-Stokes (URANS) equations.The computed results are compared to experiment to estimate its accuracy and are found to show good agreement with experiment.A method is proposed to evaluate the turbulent kinetic energy in the framework of the Spalart-Allmaras one equation turbulence model.From the calculation results,the turbulent kinetic energy is visualized as the turbulence of the flow which leads to generate the broadband noise,and its noise sources are identified.
文摘It is very necessary for investigation on mechanism of windblown sand movement to understand and find out effective measures of preventing and reducing windblown sand, This also deals with some general features and hot spots in the scientific forelands. such as multi-scale problems. interactions among. multi-physical-fields, randomness and nonlinearity as well as complex systems. In recent years, a series of experiments in wind tunnels and theoretical modeling as well as computer simulation have been taken by our research group (the Laboratory of Environmental Mechanics on Windblown Sand Movement in Lanzhou University )in a cross-disciplinary (mechanics and geography) viewpoint. Several original and essential studies were explored such as the main regularities of charges on sand particles, the mechanisms of electric field in windblown sand flux, the effects induced by the electric field on the flux, the microwave propagations, the evolution process of windblown and flux under mutual couple interations among several physical fields, and the simulation of the main features of Aeolian sand ripples.
基金supported by National Basic Research Program of China (Grant No. 2010CB428403)National Natural Science Foundation of China (Grant No.41075076)Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KZCX2-EW-QN207)
文摘Bayesian model averaging(BMA) is a recently proposed statistical method for calibrating forecast ensembles from numerical weather models.However,successful implementation of BMA requires accurate estimates of the weights and variances of the individual competing models in the ensemble.Two methods,namely the Expectation-Maximization(EM) and the Markov Chain Monte Carlo(MCMC) algorithms,are widely used for BMA model training.Both methods have their own respective strengths and weaknesses.In this paper,we first modify the BMA log-likelihood function with the aim of removing the addi-tional limitation that requires that the BMA weights add to one,and then use a limited memory quasi-Newtonian algorithm for solving the nonlinear optimization problem,thereby formulating a new approach for BMA(referred to as BMA-BFGS).Several groups of multi-model soil moisture simulation experiments from three land surface models show that the performance of BMA-BFGS is similar to the MCMC method in terms of simulation accuracy,and that both are superior to the EM algo-rithm.On the other hand,the computational cost of the BMA-BFGS algorithm is substantially less than for MCMC and is al-most equivalent to that for EM.