期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
智慧学校理念驱动下中小学教室模数优选研究
1
作者 张宇 程筱添 唐吉祯 《工业建筑》 北大核心 2023年第7期52-63,共12页
国家“十四五”期间,双碳战略驱动下中小学智慧校园装配式建造模式转型,教室的模数是优选满足工业化与智慧化需求的核心问题。通过分析智慧学校教学单元的教学与空间模式,可提出满足信息化教学与教学模式可变性的智慧教室功能模块。以... 国家“十四五”期间,双碳战略驱动下中小学智慧校园装配式建造模式转型,教室的模数是优选满足工业化与智慧化需求的核心问题。通过分析智慧学校教学单元的教学与空间模式,可提出满足信息化教学与教学模式可变性的智慧教室功能模块。以满足装配式模数协调原则为目标,通过建立模型与数据统计得出适应性最强的高频尺寸对应模数,建立工作流优选模数为建筑师决策提供工具,提高装配式智慧教室标准化程度,达到标准化与个性化的有机融合,基于优选模数建立建筑信息模型部品族库,形成智慧中小学新型建筑工业化建造模式。 展开更多
关键词 智慧学校 装配式 教室模数 模数优选
原文传递
Application of BP neural network model with fuzzy optimization in retrieval of biomass parameters 被引量:1
2
作者 陈守煜 郭瑜 《Agricultural Science & Technology》 CAS 2005年第2期7-11,共5页
The retrieval of the biomass parameters from active/passive microwave remote sensing data (10.2 GHz) is performed based on an iterative inversion of BP neural network model with fuzzy optimization. The BP neural net... The retrieval of the biomass parameters from active/passive microwave remote sensing data (10.2 GHz) is performed based on an iterative inversion of BP neural network model with fuzzy optimization. The BP neural network is trained by a set of the measurements of active and passive remote sensing and the ground truth data versus Day of Year during growth. Once the network training is complete, the model can be used to retrieve the temporal variations of the biomass parameters from another set of observation data. The model was used in weights and microware observation data of wheat growth in 1989 to retrieve biomass parameters change of wheat growth this year. The retrieved biomass parameters correspond well with the real data of the growth, which shows that the BP model is scientific and sound. 展开更多
关键词 ANN BP model biomass parameters RETRIEVAL
下载PDF
Machine tool selection based on fuzzy evaluation and optimization of cutting parameters
3
作者 张保平 关世玺 +2 位作者 张博 王斌 田甜 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第4期384-389,共6页
The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size,... The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size, machining range, machining precision and surface roughness. By means of fuzzy comprehensive evaluation method, the membership degree of machine tool selection and the largest comprehensive evaluation index are determined. Then the reasonably automatic selection of machine tool is realized in the generative computer aided process planning (CAPP) system. Finally, the finite element model based on ABAQUS is established and the cutting process of machine tool is simulated. According to the theoretical and empirical cutting parameters and the curve of surface residual stress, the optimal cutting parameters can be determined. 展开更多
关键词 fuzzy evaluation machine selection computer aided process planning(CAPP) parameter optimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部