以聚苯乙烯微球的单层和双层胶体晶体为模板,通过模板电沉积银,移除模板后得到单层和双层银通孔阵列,并用作基于增强光透射(EOT)的等离子传感器.结果表明,与单层银通孔阵列相比,双层通孔阵列的传感灵敏度和品质因子都有很大提升,最高分...以聚苯乙烯微球的单层和双层胶体晶体为模板,通过模板电沉积银,移除模板后得到单层和双层银通孔阵列,并用作基于增强光透射(EOT)的等离子传感器.结果表明,与单层银通孔阵列相比,双层通孔阵列的传感灵敏度和品质因子都有很大提升,最高分别达到559.71 nm/RIU(RIU:Refractive index unit)和14.28 RIU^(-1).展开更多
We present a general approach to fabricate metal/TiO2 core/shell nanorod structures by twostep electrodeposition. Firstly, TiO2 nanotubes with uniform wall thickness are prepared in anodic aluminum oxide (AAO) membr...We present a general approach to fabricate metal/TiO2 core/shell nanorod structures by twostep electrodeposition. Firstly, TiO2 nanotubes with uniform wall thickness are prepared in anodic aluminum oxide (AAO) membranes by electrodeposition. The wall thickness of the nanotubes could be easily controlled by modulating the deposition time, and their outer diameter and length are only limited by the channel diameter and the thickness of the AAO membranes, respectively. The nanotubes' tops prepared by this method are open, while the bottoms are connected directly with the Au film at the back of the AAO membranes. Secondly, Pd, Cu, and Fe elements are filled into the TiO2 nanotubes to form core/shell structures. The core/shell nanorods prepared by this two-step process are high density and free-standing, and their length is dependent on the deposition time.展开更多
Ni nanoparticles plating was prepared in reverse microemulsion. The deposition was carried out through the Brownian motion of water pools in the reverse microemulsion and the adsorption of water pools on the electrode...Ni nanoparticles plating was prepared in reverse microemulsion. The deposition was carried out through the Brownian motion of water pools in the reverse microemulsion and the adsorption of water pools on the electrode surface. Effects of electrolytic parameters on the size of Ni particles were studied. The performances of hydrogen evolution and hydrogen storage of the Ni nanoparticles plating electrode were also investigated. The results indicate that the size of Ni nanoparticles decreases with the increase of Ni2+ concentration and the decrease of current density. The electrochemical activity of Ni nanoparticles plating electrode is much higher than that of bulk Ni electrode.展开更多
Copper indium diselenide nanorod arrays were electrodeposited on tungsten/silicon rigid substrates using porous anodic alumina as growth template. The porous anodic alumina templates were prepared by anodizing aluminu...Copper indium diselenide nanorod arrays were electrodeposited on tungsten/silicon rigid substrates using porous anodic alumina as growth template. The porous anodic alumina templates were prepared by anodizing aluminum films which were sputtered onto the tungsten/silicon substrates. A selective chemical etching was used to penetrate the barrier layer at the bottom of the alumina channels before electrodeposition, which enables direct electrical and chemical contact with the underside substrate electrode. The as-deposited samples were annealed at 450 ℃ in vacuum. Scanning electron microscopy revealed that the nanorods were dense and compact with diameter of about 100 nm, length of approximate 1 um, and the aspect ratio of 10. X-ray diffraction, micro-Raman spectroscopy, and high resolution transmission electron microscopy showed that chalcopyrite polycrystalline structure and high purity CuInSe2 nanorods were obtained. The grain size was large in the rod axial direction. Energy-dispersive X-ray spectroscopy showed the composition was nearly stoichiometric. The energy band gap of this nanorod arrays was analyzed by fundamental absorption spectrum and was evaluated to be 0.96 eV.展开更多
文摘以聚苯乙烯微球的单层和双层胶体晶体为模板,通过模板电沉积银,移除模板后得到单层和双层银通孔阵列,并用作基于增强光透射(EOT)的等离子传感器.结果表明,与单层银通孔阵列相比,双层通孔阵列的传感灵敏度和品质因子都有很大提升,最高分别达到559.71 nm/RIU(RIU:Refractive index unit)和14.28 RIU^(-1).
基金This work is supported by the National Natural Science Foundation of China (No.10574122, No.50772110, No.50721091) and the National Basic Research Program of China (No.2011CB921400, No.2007CB925202, No.2009CB939901).
文摘We present a general approach to fabricate metal/TiO2 core/shell nanorod structures by twostep electrodeposition. Firstly, TiO2 nanotubes with uniform wall thickness are prepared in anodic aluminum oxide (AAO) membranes by electrodeposition. The wall thickness of the nanotubes could be easily controlled by modulating the deposition time, and their outer diameter and length are only limited by the channel diameter and the thickness of the AAO membranes, respectively. The nanotubes' tops prepared by this method are open, while the bottoms are connected directly with the Au film at the back of the AAO membranes. Secondly, Pd, Cu, and Fe elements are filled into the TiO2 nanotubes to form core/shell structures. The core/shell nanorods prepared by this two-step process are high density and free-standing, and their length is dependent on the deposition time.
基金Projects(20673036,J0830415) supported by the National Natural Science Foundation of ChinaProject(09JJ3025) supported by Hunan Provincial Natural Science Foundation of ChinaProject(09GK3173) supported by the Planned Science and Technology Project of Hunan Province,China
文摘Ni nanoparticles plating was prepared in reverse microemulsion. The deposition was carried out through the Brownian motion of water pools in the reverse microemulsion and the adsorption of water pools on the electrode surface. Effects of electrolytic parameters on the size of Ni particles were studied. The performances of hydrogen evolution and hydrogen storage of the Ni nanoparticles plating electrode were also investigated. The results indicate that the size of Ni nanoparticles decreases with the increase of Ni2+ concentration and the decrease of current density. The electrochemical activity of Ni nanoparticles plating electrode is much higher than that of bulk Ni electrode.
文摘Copper indium diselenide nanorod arrays were electrodeposited on tungsten/silicon rigid substrates using porous anodic alumina as growth template. The porous anodic alumina templates were prepared by anodizing aluminum films which were sputtered onto the tungsten/silicon substrates. A selective chemical etching was used to penetrate the barrier layer at the bottom of the alumina channels before electrodeposition, which enables direct electrical and chemical contact with the underside substrate electrode. The as-deposited samples were annealed at 450 ℃ in vacuum. Scanning electron microscopy revealed that the nanorods were dense and compact with diameter of about 100 nm, length of approximate 1 um, and the aspect ratio of 10. X-ray diffraction, micro-Raman spectroscopy, and high resolution transmission electron microscopy showed that chalcopyrite polycrystalline structure and high purity CuInSe2 nanorods were obtained. The grain size was large in the rod axial direction. Energy-dispersive X-ray spectroscopy showed the composition was nearly stoichiometric. The energy band gap of this nanorod arrays was analyzed by fundamental absorption spectrum and was evaluated to be 0.96 eV.