期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
浮选气泡NSCT域多尺度等效形态特征提取及识别 被引量:9
1
作者 黄凌霄 廖一鹏 《光学精密工程》 EI CAS CSCD 北大核心 2020年第3期704-716,共13页
为了解决浮选气泡图像现场光照不均、相互黏结、无背景等造成的直接形态特征提取困难问题,提出一种浮选气泡NSCT域(Nonsubsampled Contourlet Transform, NSCT)的多尺度等效形态特征提取及识别方法。通过NSCT变换将浮选气泡图像分解为... 为了解决浮选气泡图像现场光照不均、相互黏结、无背景等造成的直接形态特征提取困难问题,提出一种浮选气泡NSCT域(Nonsubsampled Contourlet Transform, NSCT)的多尺度等效形态特征提取及识别方法。通过NSCT变换将浮选气泡图像分解为低频图像和多尺度多方向高频图像;采用模糊集方法二值化低频子带图像,得到气泡亮点图像,提取亮点个数、平均面积、标准差和椭圆率作为等效形态尺寸特征;结合方向模极大值及差分盒维法计算各高频子带方向的分形维数;最后,将多尺度多方向等效形态尺寸特征作为输入,采用量子门节点神经网络对三类浮选气泡图像进行状态识别和分类。实验结果表明,该方法提取的等效形态尺寸特征与分类的相关性高,能对三种类型浮选气泡图像进行有效的状态识别,平均识别准确率达95.1%。本算法的识别准确率较几种流行算法而言有较大提高,适用于动态变化的浮选工况。 展开更多
关键词 浮选气泡图像 多尺度等效形态特征 NSCT变换 糊集二值化 模极大值分形维数 量子门节点神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部