Based on the occurrence features of Group B coal-seams at a coal mine in the Huainan coal mining area, the elasto-plastic mechanical damage constitutive functions and numerical model for the protective layer excavatio...Based on the occurrence features of Group B coal-seams at a coal mine in the Huainan coal mining area, the elasto-plastic mechanical damage constitutive functions and numerical model for the protective layer excavation were established. With the UDEC2D computer program, after the upper protective layer was mined, the stress field change trends, crack development, and expansion deformation trends of underlying coal rock seams in the floor of the working face were simulated and analyzed. The simulation results show the stress changes in coal rock seams, the evolution process of pre-cracks during the process of upper protective layer mining, the caved zone and fractured zone of the underlying coal rock seams. At the same time, the results from the actual investigation and analysis of protected layer deformation match the simulation values, which verifies the validity and accuracy of numerical simulation results. The study results have an important guiding significance for gas management in low permeability and high gas coal seams with similar mining conditions.展开更多
For the purpose of describing the deformation characteristics of rocks,the effect of volume changes on mechanical properties of rocks should be taken into account with relation to the development of constitutive model...For the purpose of describing the deformation characteristics of rocks,the effect of volume changes on mechanical properties of rocks should be taken into account with relation to the development of constitutive model.Firstly,rocks are divided into three parts,i.e.,voids,a damaged part and an undamaged part in the course of loading.The void ratio was applied to describing the changes of voids or pores during the deformation process.Then,using statistical damage theory,a constitutive model was developed for rocks to describe their strain softening and hardening on the basis of investigating the relationship between the net stress and apparent stress,in which the influence of volume changes on rock behavior was correctly taken into account,such as the initial phase of compaction and the latter stage of dilation.Thirdly,a method of determining model parameters was also presented.Finally,this model was used to compare the theoretical results with those observed from experiments under conventional triaxial loading conditions.展开更多
基金Supported by the National Natural Science Foundation of China (51004003) the Natural Science Foundation of Ministry of Education of Anhui Province (K J2010A091 )
文摘Based on the occurrence features of Group B coal-seams at a coal mine in the Huainan coal mining area, the elasto-plastic mechanical damage constitutive functions and numerical model for the protective layer excavation were established. With the UDEC2D computer program, after the upper protective layer was mined, the stress field change trends, crack development, and expansion deformation trends of underlying coal rock seams in the floor of the working face were simulated and analyzed. The simulation results show the stress changes in coal rock seams, the evolution process of pre-cracks during the process of upper protective layer mining, the caved zone and fractured zone of the underlying coal rock seams. At the same time, the results from the actual investigation and analysis of protected layer deformation match the simulation values, which verifies the validity and accuracy of numerical simulation results. The study results have an important guiding significance for gas management in low permeability and high gas coal seams with similar mining conditions.
基金Project(2006AA11Z104) supported by the National High-Tech Research and Development Program of China
文摘For the purpose of describing the deformation characteristics of rocks,the effect of volume changes on mechanical properties of rocks should be taken into account with relation to the development of constitutive model.Firstly,rocks are divided into three parts,i.e.,voids,a damaged part and an undamaged part in the course of loading.The void ratio was applied to describing the changes of voids or pores during the deformation process.Then,using statistical damage theory,a constitutive model was developed for rocks to describe their strain softening and hardening on the basis of investigating the relationship between the net stress and apparent stress,in which the influence of volume changes on rock behavior was correctly taken into account,such as the initial phase of compaction and the latter stage of dilation.Thirdly,a method of determining model parameters was also presented.Finally,this model was used to compare the theoretical results with those observed from experiments under conventional triaxial loading conditions.