Some microscopic traffic simulations on urban road network are developed up to now. However, the effect of urban transport policy in the local city is influenced with the complex interaction of automobile traffic and ...Some microscopic traffic simulations on urban road network are developed up to now. However, the effect of urban transport policy in the local city is influenced with the complex interaction of automobile traffic and public transport traffic. Particularly, behaviours of vehicles should be described with the fuzziness of the subjective recognition and operation. On the other hand, the trip makers are influenced by various transport policies in terms of mode choice behaviour. The change in mode choice behaviour and number of public transport mode users would eventually affect traffic flow conditions on road network. Modal spilt and traffic conditions of a network are interrelated. Therefore, the present study mainly aims to integrate mode choice model and microscopic traffic simulation model based on fuzzy logic. In the study, the fuzzy logic based mode choice model is proposed. The proposed mode choice model and the existing microscopic traffic simulation model are combined. The developed model has been applied on real urban network to demonstrate the effectiveness of the installation of LRT system. Finally, it is helpful for evaluation of transport policy that the fuzzy logic based microscopic traffic simulation with modal choice model has been constructed.展开更多
This paper presents a control strategy of a hybrid fuel cell/battery distributed generation (HDG) system in distribution systems. The overall structure of the HDG system is given, dynamic models for the solid oxide fu...This paper presents a control strategy of a hybrid fuel cell/battery distributed generation (HDG) system in distribution systems. The overall structure of the HDG system is given, dynamic models for the solid oxide fuel cell (SOFC) power plant, battery bank and its power electronic interfacing are briefly described, and controller design methodologies for the power conditioning units and fuel cell to control the power flow from the hybrid power plant to the utility grid are presented. To distribute the power between the fuel cell power plant and the battery energy storage, a neuro-fuzzy controller has been developed. Also, for controlling the active and reactive power independently in distribution systems, the current control strategy based on two fuzzy logic controllers has been presented. A Matlab/Simulink simulation model is developed for the HDG system by combining the individual component models and their controllers. Simulation results show the overall system performance including load-following and power management of the HDG system.展开更多
文摘Some microscopic traffic simulations on urban road network are developed up to now. However, the effect of urban transport policy in the local city is influenced with the complex interaction of automobile traffic and public transport traffic. Particularly, behaviours of vehicles should be described with the fuzziness of the subjective recognition and operation. On the other hand, the trip makers are influenced by various transport policies in terms of mode choice behaviour. The change in mode choice behaviour and number of public transport mode users would eventually affect traffic flow conditions on road network. Modal spilt and traffic conditions of a network are interrelated. Therefore, the present study mainly aims to integrate mode choice model and microscopic traffic simulation model based on fuzzy logic. In the study, the fuzzy logic based mode choice model is proposed. The proposed mode choice model and the existing microscopic traffic simulation model are combined. The developed model has been applied on real urban network to demonstrate the effectiveness of the installation of LRT system. Finally, it is helpful for evaluation of transport policy that the fuzzy logic based microscopic traffic simulation with modal choice model has been constructed.
文摘This paper presents a control strategy of a hybrid fuel cell/battery distributed generation (HDG) system in distribution systems. The overall structure of the HDG system is given, dynamic models for the solid oxide fuel cell (SOFC) power plant, battery bank and its power electronic interfacing are briefly described, and controller design methodologies for the power conditioning units and fuel cell to control the power flow from the hybrid power plant to the utility grid are presented. To distribute the power between the fuel cell power plant and the battery energy storage, a neuro-fuzzy controller has been developed. Also, for controlling the active and reactive power independently in distribution systems, the current control strategy based on two fuzzy logic controllers has been presented. A Matlab/Simulink simulation model is developed for the HDG system by combining the individual component models and their controllers. Simulation results show the overall system performance including load-following and power management of the HDG system.