The modelling and formal characterization of spatial vagueness plays an increasingly important role in the imple- mentation of Geographic Information System (GIS). The concepts involved in spatial objects of GIS have ...The modelling and formal characterization of spatial vagueness plays an increasingly important role in the imple- mentation of Geographic Information System (GIS). The concepts involved in spatial objects of GIS have been investigated and acknowledged as being vague and ambiguous. Models and methods which describe and handle fuzzy or vague (rather than crisp or determinate) spatial objects, will be more necessary in GIS. This paper proposes a new method for modelling spatial vagueness based on type-2 fuzzy set, which is distinguished from the traditional type-1 fuzzy methods and more suitable for describing and implementing the vague concepts and objects in GIS.展开更多
This paper presents a new idea, named as modeling multisensor-heterogeneous information, to incorporate the fuzzy logic methodologies with mulitsensor-multitarget system under the framework of random set theory. First...This paper presents a new idea, named as modeling multisensor-heterogeneous information, to incorporate the fuzzy logic methodologies with mulitsensor-multitarget system under the framework of random set theory. Firstly, based on strong random set and weak random set, the unified form to describe both data (unambiguous information) and fuzzy evidence (uncertain information) is introduced. Secondly, according to signatures of fuzzy evidence, two Bayesian-markov nonlinear measurement models are proposed to fuse effectively data and fuzzy evidence. Thirdly, by use of "the models-based signature-matching scheme", the operation of the statistics of fuzzy evidence defined as random set can be translated into that of the membership functions of relative point state variables. These works are the basis to construct qualitative measurement models and to fuse data and fuzzy evidence.展开更多
文摘The modelling and formal characterization of spatial vagueness plays an increasingly important role in the imple- mentation of Geographic Information System (GIS). The concepts involved in spatial objects of GIS have been investigated and acknowledged as being vague and ambiguous. Models and methods which describe and handle fuzzy or vague (rather than crisp or determinate) spatial objects, will be more necessary in GIS. This paper proposes a new method for modelling spatial vagueness based on type-2 fuzzy set, which is distinguished from the traditional type-1 fuzzy methods and more suitable for describing and implementing the vague concepts and objects in GIS.
基金Supported by the NSFC(No.60434020,60572051)Science and Technology Key Item of Ministry of Education of the PRC( No.205-092)the ZJNSF(No. R106745)
文摘This paper presents a new idea, named as modeling multisensor-heterogeneous information, to incorporate the fuzzy logic methodologies with mulitsensor-multitarget system under the framework of random set theory. Firstly, based on strong random set and weak random set, the unified form to describe both data (unambiguous information) and fuzzy evidence (uncertain information) is introduced. Secondly, according to signatures of fuzzy evidence, two Bayesian-markov nonlinear measurement models are proposed to fuse effectively data and fuzzy evidence. Thirdly, by use of "the models-based signature-matching scheme", the operation of the statistics of fuzzy evidence defined as random set can be translated into that of the membership functions of relative point state variables. These works are the basis to construct qualitative measurement models and to fuse data and fuzzy evidence.