期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于自回归各态历经模型参数辨识的模糊双卡尔曼滤波算法的储能电池荷电状态估算
被引量:
9
1
作者
丁稳房
付晓光
张轩豪
《科学技术与工程》
北大核心
2020年第6期2299-2304,共6页
扩展卡尔曼滤波(extended Kalman filter,EKF)算法在电池荷电状态(state of charge,SOC)估算领域广泛应用。但作为一种基于模型的算法,电池模型误差影响SOC估算的精度。为了抑制电流的幅值与阶跃电流因素对模型误差的影响,提出一种动态...
扩展卡尔曼滤波(extended Kalman filter,EKF)算法在电池荷电状态(state of charge,SOC)估算领域广泛应用。但作为一种基于模型的算法,电池模型误差影响SOC估算的精度。为了抑制电流的幅值与阶跃电流因素对模型误差的影响,提出一种动态修正观测噪声协方差的模糊双卡尔曼滤波(fuzzy dual Kalman filter,FDKF)算法。该算法首先将一阶电阻-电容(resistor-capacitance,RC)等效模型转换为自回归各态历经(autoregressive exogenous,ARX)模型的形式,用卡尔曼滤波(Kalman filter,KF)算法更新转换后模型的参数,且在SOC估算的过程中获取电流与电流变化量的数据,并通过建立模糊控制系统调整观测噪声的协方差值来抵消模型误差。结果表明:FDKF算法在某储能工况下估算误差的最大值为0.39%,小于EKF算法的3.92%和双卡尔曼滤波(dual Kalman filter,DKF)算法的1.12%,可见FDKF该算法能够有效地提升SOC估算的精度。
展开更多
关键词
荷电状态
模糊双卡尔曼滤波
观测噪声
自回归各态历经模型
模糊
控制
下载PDF
职称材料
题名
基于自回归各态历经模型参数辨识的模糊双卡尔曼滤波算法的储能电池荷电状态估算
被引量:
9
1
作者
丁稳房
付晓光
张轩豪
机构
湖北工业大学太阳能高效利用及储能运行控制湖北省重点实验室
出处
《科学技术与工程》
北大核心
2020年第6期2299-2304,共6页
文摘
扩展卡尔曼滤波(extended Kalman filter,EKF)算法在电池荷电状态(state of charge,SOC)估算领域广泛应用。但作为一种基于模型的算法,电池模型误差影响SOC估算的精度。为了抑制电流的幅值与阶跃电流因素对模型误差的影响,提出一种动态修正观测噪声协方差的模糊双卡尔曼滤波(fuzzy dual Kalman filter,FDKF)算法。该算法首先将一阶电阻-电容(resistor-capacitance,RC)等效模型转换为自回归各态历经(autoregressive exogenous,ARX)模型的形式,用卡尔曼滤波(Kalman filter,KF)算法更新转换后模型的参数,且在SOC估算的过程中获取电流与电流变化量的数据,并通过建立模糊控制系统调整观测噪声的协方差值来抵消模型误差。结果表明:FDKF算法在某储能工况下估算误差的最大值为0.39%,小于EKF算法的3.92%和双卡尔曼滤波(dual Kalman filter,DKF)算法的1.12%,可见FDKF该算法能够有效地提升SOC估算的精度。
关键词
荷电状态
模糊双卡尔曼滤波
观测噪声
自回归各态历经模型
模糊
控制
Keywords
state-of-charge
fuzzy dual Kalman filter
observation noise
autoregressive exogenous model
fuzzy control
分类号
TM912.9 [电气工程—电力电子与电力传动]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于自回归各态历经模型参数辨识的模糊双卡尔曼滤波算法的储能电池荷电状态估算
丁稳房
付晓光
张轩豪
《科学技术与工程》
北大核心
2020
9
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部