期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
第一代小地老虎危害程度的模糊回归预测模型的研究 被引量:3
1
作者 丁世飞 程述汉 周法莲 《农业系统科学与综合研究》 CSCD 北大核心 1997年第1期38-41,共4页
对第一代小地老虎危害程度的模糊回归预测模型进行了研究,建立了其预报体系(模糊隶属函数集),对历史资料进行了回代验证,其符合率达91.3%,将1990年作为独立样本进行试报,预测结算与实测相符。
关键词 小地老虎 模糊回归预测模型 预测预报
下载PDF
基于多影响因素的民航货运量模糊回归预测 被引量:4
2
作者 周慧艳 李程 《物流技术》 北大核心 2014年第3期216-218,共3页
从航空货运发展的实际出发,分析影响预报因子的因素,基于GDP、全社会固定资产投资和居民消费水平的影响因素,采用系统观点和类比方法,运用模糊数和多元回归等方法,从影响航空货运量的因素、样本的选取、模型的应用这三个主要环节入手,... 从航空货运发展的实际出发,分析影响预报因子的因素,基于GDP、全社会固定资产投资和居民消费水平的影响因素,采用系统观点和类比方法,运用模糊数和多元回归等方法,从影响航空货运量的因素、样本的选取、模型的应用这三个主要环节入手,对民航货运量展开预测,结果表明建立的模糊回归理论模型具有很高的准确率,具有很强的现实意义和实际操作性。 展开更多
关键词 多影响因素 民航货运量 模糊回归预测
下载PDF
多元模糊回归预测早稻稻蓟马发生程度 被引量:4
3
作者 陈观浩 李前飞 《广西农业生物科学》 CSCD 2002年第1期42-45,共4页
根据化州市 1 985~ 1 997年资料 ,应用多元模糊回归分析方法 ,组建了早稻稻蓟马发生程度预测模型。经回测检验 ,历史符合率达 1 0 0 %。对 1 998年和 1 999年发生程度进行预测 。
关键词 稻蓟马 模糊回归预测模型 观测 早稻 发生程度
下载PDF
应用模糊回归技术预测第二代烟青虫发生动态
4
作者 丁世飞 吴清芹 《中国农业气象》 CSCD 1999年第1期43-45,共3页
应用模糊回归技术,对山东省沂水县1987 ̄1993年共7年的第二代烟青虫发生动态的观测数据进行了数量分析,建立了模糊隶属函数集(预报模型)。经对历史资料的回报验证,其历史符合率为85.71%,将1994年观测数据作为... 应用模糊回归技术,对山东省沂水县1987 ̄1993年共7年的第二代烟青虫发生动态的观测数据进行了数量分析,建立了模糊隶属函数集(预报模型)。经对历史资料的回报验证,其历史符合率为85.71%,将1994年观测数据作为独立样本进行试报,其预测结果与实际一致。 展开更多
关键词 烟青虫 模糊回归预测 预测预报
下载PDF
数学模型中预测模型的应用及比较分析
5
作者 华颖 周琦 《景德镇高专学报》 2013年第6期30-31,共2页
针对学生在建立预测模型时不能准确判别使用合适的预测模型的问题,归纳了几种使用较多的预测方法:多元回归预测模型、灰色预测模型、BP神经网络模型、微分方程模型。对每种预测模型做了简单的介绍分析和适当地对某些模型进行了改进,总... 针对学生在建立预测模型时不能准确判别使用合适的预测模型的问题,归纳了几种使用较多的预测方法:多元回归预测模型、灰色预测模型、BP神经网络模型、微分方程模型。对每种预测模型做了简单的介绍分析和适当地对某些模型进行了改进,总结了相应的优缺点以及各自适用的预测范围。 展开更多
关键词 灰色预测模型 微分方程模型 多元模糊回归预测模型 BP神经网络模型
下载PDF
Prediction of rock mass rating using fuzzy logic and multi-variable RMR regression model 被引量:11
6
作者 Jalalifar H. Mojedifar S. Sahebi A.A. 《International Journal of Mining Science and Technology》 SCIE EI 2014年第2期237-244,共8页
Rock mass rating system (RMR) is based on the six parameters which was defined by Bieniawski (1989) [1]. Experts frequently relate joint and discontinuities and ground water conditions in linguistic terms with rou... Rock mass rating system (RMR) is based on the six parameters which was defined by Bieniawski (1989) [1]. Experts frequently relate joint and discontinuities and ground water conditions in linguistic terms with rough calculation. As a result, there is a sharp transition between two modules which create doubts. So, in this paper the proposed weights technique was applied for linguistic criteria. Then by using the fuzzy inference system and the multi-variable regression analysis, the accurate RMR is predicted. Before the performing of regression analysis, sensitivity analysis was applied for each of Bieniawski parameters. In this process, the best function was selected among linear, logarithmic, exponential and inverse func- tions and finally it was applied in the regression analysis for construction of a predictive equation. From the constructed regression equation the relative importance of the input parameters can also be observed. It should be noted that joint condition was identified as the most important effective parameter upon RMR. Finally, fuzzy and regression models were validated with the test datasets and it was found that the fuzzy model predicts more accurately RMR than reression models. 展开更多
关键词 Fuzzy set Fuzzy inference system Multi-variable regression Rock mass classification
下载PDF
Short-Term Wind Power Prediction Using Fuzzy Clustering and Support Vector Regression 被引量:3
7
作者 In-Yong Seo Bok-Nam Ha +3 位作者 Sung-Woo Lee Moon-Jong Jang Sang-Ok Kim Seong-Jun Kim 《Journal of Energy and Power Engineering》 2012年第10期1605-1610,共6页
A sustainable production of electricity is essential for low carbon green growth in South Korea. The generation of wind power as renewable energy has been rapidly growing around the world. Undoubtedly, wind energy is ... A sustainable production of electricity is essential for low carbon green growth in South Korea. The generation of wind power as renewable energy has been rapidly growing around the world. Undoubtedly, wind energy is unlimited in potential. However due to its own intermittency and volatility, there are difficulties in the effective harvesting of wind energy and the integration of wind power into the current electric power grid. To cope with this, many works have been done for wind speed and power forecasting. In this paper, an SVR (support vector regression) using FCM (Fuzzy C-Means) is proposed for wind speed forecasting. This paper describes the design of an FCM based SVR to increase the prediction accuracy. Proposed model was compared with ordinary SVR model using balanced and unbalanced test data. Also, multi-step ahead forecasting result was compared. Kernel parameters in SVR are adaptively determined in order to improve forecasting accuracy. An illustrative example is given by using real-world wind farm dataset. According to the experimental results, it is shown that the proposed method provides better forecasts of wind power. 展开更多
关键词 Support vector regression KERNEL fuzzy clustering wind power prediction.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部