期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于优化克隆选择算法的云资源调度研究 被引量:1
1
作者 杨丽 朱博 《计算机与数字工程》 2018年第12期2395-2399,共5页
论文在克隆选择算法的启发下,提出了克隆选择的优化模型和算法,通过对多峰函数的计算优化实验,验证了该优化方法改进了传统遗传算法的性能。同时,论文将此算法应用于云环境的资源调度研究中,最终提出具有模糊处理时间的人工免疫调度算... 论文在克隆选择算法的启发下,提出了克隆选择的优化模型和算法,通过对多峰函数的计算优化实验,验证了该优化方法改进了传统遗传算法的性能。同时,论文将此算法应用于云环境的资源调度研究中,最终提出具有模糊处理时间的人工免疫调度算法。通过仿真和比较实验,验证了该算法的有效性和效率。 展开更多
关键词 云资源调度 克隆选择优化 人工免疫算法 模糊处理时间
下载PDF
A Novel Particle Swarm Optimization for Flow Shop Scheduling with Fuzzy Processing Time 被引量:1
2
作者 牛群 顾幸生 《Journal of Donghua University(English Edition)》 EI CAS 2008年第2期115-122,共8页
Since in most practical cases the processing time of scheduling is not deterministic, flow shop scheduling model with fuzzy processing time is established. It is assumed that the processing times of jobs on the machin... Since in most practical cases the processing time of scheduling is not deterministic, flow shop scheduling model with fuzzy processing time is established. It is assumed that the processing times of jobs on the machines are described by triangular fuzzy sets. In order to find a sequence that minimizes the mean makespan and the spread of the makespan, Lee and Li fuzzy ranking method is adopted and modified to solve the problem. Particle swarm optimization (PSO) is a population-based stochastic approximation algorithm that has been applied to a wide range of problems, but there is little reported in respect of application to scheduling problems because of its unsuitability for them. In the paper, PSO is redefined and modified by introducing genetic operations such as crossover and mutation to update the particles, which is called GPSO and successfully employed to solve the formulated problem. A series of benchmarks with fuzzy processing time are used to verify GPSO. Extensive experiments show the feasibility and effectiveness of the proposed method. 展开更多
关键词 flow shop SCHEDULING FUZZY PSO
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部