Since the existing single-layer networked control systems have some inherent limitations and cannot effectively handle the problems associated with unreliable networks, a novel two-layer networked learning control sys...Since the existing single-layer networked control systems have some inherent limitations and cannot effectively handle the problems associated with unreliable networks, a novel two-layer networked learning control system (NLCS) is proposed in this paper. Its lower layer has a number of local controllers that are operated independently, and its upper layer has a learning agent that communicates with the independent local controllers in the lower layer. To implement such a system, a packet-discard strategy is firstly developed to deal with network-induced delay and data packet loss. A cubic spline interpolator is then employed to compensate the lost data. Finally, the output of the learning agent based on a novel radial basis function neural network (RBFNN) is used to update the parameters of fuzzy controllers. A nonlinear heating, ventilation and air-conditioning (HVAC) system is used to demonstrate the feasibility and effectiveness of the proposed system.展开更多
To improve the ride quality and enhance the control efficiency of cars’semi-active air suspensions(SASs)under various surfaces of soft and rigid roads,a machine learning(ML)method is proposed based on the optimized r...To improve the ride quality and enhance the control efficiency of cars’semi-active air suspensions(SASs)under various surfaces of soft and rigid roads,a machine learning(ML)method is proposed based on the optimized rules of the fuzzy control(FC)method and car dynamic model for application in SASs.The root-mean-square(RMS)acceleration of the driver’s seat and car’s pitch angle are chosen as the objective functions.The results indicate that a soft surface obviously influences a car’s ride quality,particularly when it is traveling at a high-velocity range of over 72 km/h.Using the ML method,the car’s ride quality is improved as compared to those of FC and without control under different simulation conditions.In particular,compared with those cars without control,the RMS acceleration of the driver’s seat and car’s pitch angle using the ML method are respectively reduced by 30.20% and 19.95% on the soft road and 34.36% and 21.66% on the rigid road.In addition,to optimize the ML efficiency,its learning data need to be updated under all various operating conditions of cars.展开更多
It has been shown in recent economic and statistical studies that combining forecasts may produce more accurate forecasts than individual ones. However, the literature on combining forecasts has almost exclusively foc...It has been shown in recent economic and statistical studies that combining forecasts may produce more accurate forecasts than individual ones. However, the literature on combining forecasts has almost exclusively focused on linear combining forecasts. In this paper, a new nonlinear combination forecasting method based on fuzzy inference system is present to overcome the difficulties and drawbacks in linear combination modeling of non-stationary time series. Furthermore, the optimization algorithm based on a hierarchical structure of learning automata is used to identify the parameters of the fuzzy system. Experiment results related to numerical examples demonstrate that the new technique has excellent identification performances and forecasting accuracy superior to other existing linear combining forecasts.展开更多
The proposed controller incorporates FL (fuzzy logic) algorithm with ANN (artificial neural network). ANFIS replaces the conventional PI controller, tuning the fuzzy inference system with a hybrid learning algorit...The proposed controller incorporates FL (fuzzy logic) algorithm with ANN (artificial neural network). ANFIS replaces the conventional PI controller, tuning the fuzzy inference system with a hybrid learning algorithm. A tuning method is proposed for training of the neuro-fuzzy controller. The best rule base and the best training algorithm chosen produced high performance in the ANFIS controller. Simulation was done on Matlab Ver. 2010a. A case study was chopper-fed DC motor drive, in continuous and discrete modes. Satisfactory results show the ANFIS controller is able to control dynamic highly-nonlinear systems. Tuning it further improved the results.展开更多
基金Supported by National Natural Science Foundation of China(60774059)Project of Science &Technology Commission of Shanghaiunicipality(061107031,06DZ22011,06ZR14131)+1 种基金the Sunlight Plan Following Project of Shanghai Municipal Education Commission and Shanghai Edu-ational Development Foundation(06GG10)Shanghai Leading Academic Disciplines(T0103)
文摘Since the existing single-layer networked control systems have some inherent limitations and cannot effectively handle the problems associated with unreliable networks, a novel two-layer networked learning control system (NLCS) is proposed in this paper. Its lower layer has a number of local controllers that are operated independently, and its upper layer has a learning agent that communicates with the independent local controllers in the lower layer. To implement such a system, a packet-discard strategy is firstly developed to deal with network-induced delay and data packet loss. A cubic spline interpolator is then employed to compensate the lost data. Finally, the output of the learning agent based on a novel radial basis function neural network (RBFNN) is used to update the parameters of fuzzy controllers. A nonlinear heating, ventilation and air-conditioning (HVAC) system is used to demonstrate the feasibility and effectiveness of the proposed system.
基金The National Key Research and Development Plan(No.2019YFB2006402)Talent Introduction Fund Project of Hubei Polytechnic University(No.17xjz01R)Key Scientific Research Project of Hubei Polytechnic University(No.22xjz02A)。
文摘To improve the ride quality and enhance the control efficiency of cars’semi-active air suspensions(SASs)under various surfaces of soft and rigid roads,a machine learning(ML)method is proposed based on the optimized rules of the fuzzy control(FC)method and car dynamic model for application in SASs.The root-mean-square(RMS)acceleration of the driver’s seat and car’s pitch angle are chosen as the objective functions.The results indicate that a soft surface obviously influences a car’s ride quality,particularly when it is traveling at a high-velocity range of over 72 km/h.Using the ML method,the car’s ride quality is improved as compared to those of FC and without control under different simulation conditions.In particular,compared with those cars without control,the RMS acceleration of the driver’s seat and car’s pitch angle using the ML method are respectively reduced by 30.20% and 19.95% on the soft road and 34.36% and 21.66% on the rigid road.In addition,to optimize the ML efficiency,its learning data need to be updated under all various operating conditions of cars.
基金Funded by the Excellent Young Teachers of MOE (350) and Chongqing Education Committee Foundation
文摘It has been shown in recent economic and statistical studies that combining forecasts may produce more accurate forecasts than individual ones. However, the literature on combining forecasts has almost exclusively focused on linear combining forecasts. In this paper, a new nonlinear combination forecasting method based on fuzzy inference system is present to overcome the difficulties and drawbacks in linear combination modeling of non-stationary time series. Furthermore, the optimization algorithm based on a hierarchical structure of learning automata is used to identify the parameters of the fuzzy system. Experiment results related to numerical examples demonstrate that the new technique has excellent identification performances and forecasting accuracy superior to other existing linear combining forecasts.
文摘The proposed controller incorporates FL (fuzzy logic) algorithm with ANN (artificial neural network). ANFIS replaces the conventional PI controller, tuning the fuzzy inference system with a hybrid learning algorithm. A tuning method is proposed for training of the neuro-fuzzy controller. The best rule base and the best training algorithm chosen produced high performance in the ANFIS controller. Simulation was done on Matlab Ver. 2010a. A case study was chopper-fed DC motor drive, in continuous and discrete modes. Satisfactory results show the ANFIS controller is able to control dynamic highly-nonlinear systems. Tuning it further improved the results.