期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
辐射源信号模糊定位算法 被引量:2
1
作者 徐万里 聂挥宇 《四川兵工学报》 CAS 2011年第6期57-59,68,共4页
利用无源观测站来实现信号源的精确定位一直是电磁频谱资源环境监测中的重要课题,是战场复杂电磁环境下进行电磁防御和电磁进攻的前提。根据测向信息计算出的交点分布情况,提出了一种对信号源进行模糊定位的算法,并通过仿真实验与当前... 利用无源观测站来实现信号源的精确定位一直是电磁频谱资源环境监测中的重要课题,是战场复杂电磁环境下进行电磁防御和电磁进攻的前提。根据测向信息计算出的交点分布情况,提出了一种对信号源进行模糊定位的算法,并通过仿真实验与当前流行的定位算法进行了比较,结果表明,该算法能对信号源进行有效定位,具有较高的定位精度。 展开更多
关键词 隶属度 模糊定位法 最小二乘
下载PDF
基于图书查找过程中的定位功能系统实现途径分析 被引量:2
2
作者 王建文 《电脑知识与技术》 2013年第5X期3453-3455,3480,共4页
现有图书管理系统的图书定位功能很低,只有很简单的图书信息检索能力,无法精确确定图书的存放位置,读者查找极为不便。如何在现有管理系统中构建和实现图书定位功能,是当前图书信息领域一直悬而未决的研究难题。该文从多方面论述了图书... 现有图书管理系统的图书定位功能很低,只有很简单的图书信息检索能力,无法精确确定图书的存放位置,读者查找极为不便。如何在现有管理系统中构建和实现图书定位功能,是当前图书信息领域一直悬而未决的研究难题。该文从多方面论述了图书定位功能的实现方法,重点围绕图书架次号的功用、编码、检索和管理等方面的问题,逐步展开探讨如何改进系统,实现图书定位功能。并对各种实现方法的优劣势进行对比分析,提出以后有待继续深入的研究方向。 展开更多
关键词 信息检索系统 图书定位系统 图书架次号 模糊定位法 精确定位
下载PDF
多普勒天气雷达速度PPI图散度分布信息提取 被引量:13
3
作者 徐芬 夏文梅 +1 位作者 吴蕾 吴林林 《气象》 CSCD 北大核心 2007年第11期21-27,I0001,共8页
根据大面积降水回波径向速度PPI图像产品辐合辐散特征,提出采用中值滤波法来剔除噪声污染和用逐点数据对称法来削弱回波缺失和距离折叠引起的误差。在考虑了降水粒子下落速度的情况下,采用模糊定位法来提取速度图中风速性散度特征,用直... 根据大面积降水回波径向速度PPI图像产品辐合辐散特征,提出采用中值滤波法来剔除噪声污染和用逐点数据对称法来削弱回波缺失和距离折叠引起的误差。在考虑了降水粒子下落速度的情况下,采用模糊定位法来提取速度图中风速性散度特征,用直方图形式表征风向性散度特征。最后通过比较分析,说明了提取方法可较好的表征PPI速度图中的散度信息,计算散度所表征的动力学特征与大面积降水过程有较好的对应关系。 展开更多
关键词 多普勒天气雷达 逐点数据对称 模糊定位法 辐合辐散特征
下载PDF
NOVEL APPROACH TO LOCATOR LAYOUT OPTIMIZATION BASED ON GENETIC ALGORITHM 被引量:5
4
作者 吴铁军 楼佩煌 秦国华 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第2期176-182,共7页
Proper fixture design is crucial to obtain the better product quality according to the design specification during the workpiece fabrication. Locator layout planning is one of the most important tasks in the fixture ... Proper fixture design is crucial to obtain the better product quality according to the design specification during the workpiece fabrication. Locator layout planning is one of the most important tasks in the fixture design process. However, the design of a fixture relies heavily on the designerts expertise and experience up to now. Therefore, a new approach to loeator layout determination for workpieces with arbitrary complex surfaces is pro- posed for the first time. Firstly, based on the fuzzy judgment method, the proper locating reference and locator - numbers are determined with consideration of surface type, surface area and position tolerance. Secondly, the lo- cator positions are optimized by genetic algorithm(GA). Finally, a typical example shows that the approach is su- perior to the experiential method and can improve positioning accuracy effectively. 展开更多
关键词 locator layout locating error fuzzy judgment genetic algorithm(GA)
下载PDF
A KNN-based two-step fuzzy clustering weighted algorithm for WLAN indoor positioning 被引量:3
5
作者 Xu Yubin Sun Yongliang Ma Lin 《High Technology Letters》 EI CAS 2011年第3期223-229,共7页
Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to i... Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to improve it. Thus, a KNN-based two-step FCM weighted (KTFW) algorithm for indoor positioning in wireless local area networks (WLAN) is presented in this paper. In KTFW algorithm, k reference points (RPs) chosen by KNN are clustered through FCM based on received signal strength (RSS) and location coordinates. The right clusters are chosen according to rules, so three sets of RPs are formed including the set of k RPs chosen by KNN and are given different weights. RPs supposed to have better contribution to positioning accuracy are given larger weights to improve the positioning accuracy. Simulation results indicate that KTFW generally outperforms KNN and its complexity is greatly reduced through providing initial clustering centers for FCM. 展开更多
关键词 wireless local area networks (WLAN) indoor positioning k-nearest neighbors (KNN) fuzzy c-means (FCM) clustering center
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部