期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多变量LS-SVM和模糊循环推理系统的负荷预测 被引量:12
1
作者 胡时雨 罗滇生 +1 位作者 阳霜 阳经伟 《计算机应用》 CSCD 北大核心 2015年第2期595-600,共6页
智能电网环境下,电力需求响应的发展给传统用电模式带来重大变化,用户可以根据电能需求结合实时电价调整用电模式,这使得负荷预测变得更加复杂。通过相似日负荷序列局部形相似计算,选取样本数据,采用多输入双输出的最小二乘支持向量机(L... 智能电网环境下,电力需求响应的发展给传统用电模式带来重大变化,用户可以根据电能需求结合实时电价调整用电模式,这使得负荷预测变得更加复杂。通过相似日负荷序列局部形相似计算,选取样本数据,采用多输入双输出的最小二乘支持向量机(LS-SVM),对负荷和价格进行同时预测,得到初步预测结果。考虑需求响应条件下实时电价与负荷之间的相互影响,采用基于数据挖掘技术的模糊循环推理系统模拟人的思维过程,通过挖掘电价变化量、负荷变化量等变量之间的关联规则,模拟电价与负荷预测之间存在的博弈过程,对多变量最小二乘支持向量机预测算法的初步预测结果进行循环修改,直至负荷和电价预测结果趋于稳定。多变量最小二乘支持向量机不存在容易陷入局部最优等问题,并且有良好的泛化能力,基于改进的模糊关联规则挖掘算法和循环预测控制算法具有良好的完备性和鲁棒性,能够逼近现实环境的各种可能情况,修正负荷预测结果。针对某电网的实际预测结果表明,该方法具有较好的预测效果。 展开更多
关键词 智能电网 实时电价 负荷预测 多变量最小二乘支持向量机 关联规则挖掘算法 模糊循环推理系统
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部