Length and concise structure of fuzzy logic reasoning program and its real-time reasoning characteris-tic have their effect on the performance of a digital single-chip fuzzy controller. The control effect of a digital...Length and concise structure of fuzzy logic reasoning program and its real-time reasoning characteris-tic have their effect on the performance of a digital single-chip fuzzy controller. The control effect of a digitalfuzzy controller based on looking up fuzzy control responding table is only relative to the table and not relative tothe fuzzy control rules in the practical control process. Aiming at above problem and having combined fuzzy log-ic reasoning with digital operational characteristics of a single-chip microcomputer, functioning-fuzzy-subset in-ference (FFSI) in binary, in which triangle membership functions of error and error-in-change are all represen-ted in binary and singleton membership functions of control variable is binary too, has been introduced. The cir-cuit principle plans of a single-chip fuzzy controller have been introduced for development of its hardware, andthe primary program structure, fuzzy logic reasoning subroutine, serial communication subroutine with PC andreliability design of the fuzzy controller are all discussed in detail. The control of indoor temperature by a fuzzycontroller has been conducted using a testing-room thermodynamic system. Research results show that the FFSIin binary can exercise a concise fuzzy control in a single-chip fuzzy controller, and the fuzzy controller is there-fore reliable and possesses a high performance-price ratio.展开更多
Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobil...Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter(KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system(FIS), and the fuzzy adaptive Kalman filter(FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods.展开更多
This paper presents the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model can be approximately described as a nonl...This paper presents the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is composed of fuzzy and disturbance controls, and the active control force is constructed by actuating a pneumatic actuator. A phase lead-lag compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension improves much the vibration suppression of the car model.展开更多
The proposed controller incorporates FL (fuzzy logic) algorithm with ANN (artificial neural network). ANFIS replaces the conventional PI controller, tuning the fuzzy inference system with a hybrid learning algorit...The proposed controller incorporates FL (fuzzy logic) algorithm with ANN (artificial neural network). ANFIS replaces the conventional PI controller, tuning the fuzzy inference system with a hybrid learning algorithm. A tuning method is proposed for training of the neuro-fuzzy controller. The best rule base and the best training algorithm chosen produced high performance in the ANFIS controller. Simulation was done on Matlab Ver. 2010a. A case study was chopper-fed DC motor drive, in continuous and discrete modes. Satisfactory results show the ANFIS controller is able to control dynamic highly-nonlinear systems. Tuning it further improved the results.展开更多
This paper presents a fuzzy tuning system for real-time industrial PID (proportional-integral-derivative) controllers. The algorithm set the proportional gain, integral time and derivative time of a classical PID st...This paper presents a fuzzy tuning system for real-time industrial PID (proportional-integral-derivative) controllers. The algorithm set the proportional gain, integral time and derivative time of a classical PID structure according to the set point, error and error derivative of the process, respectively. The tuning of the PID controller is based on a fuzzy inference machine. The set of rules of the fuzzy inference machine was obtained by experts engineering. The system is tested in an austempering process but can be applied in any industrial plant. Besides, an analysis between the response of the process with a PID controller and the system of fuzzy auto-tuning for P1D proposed was made.展开更多
The main requirement of a vector controller is knowing the magnitude and position of the rotating flow in the rotor. This feature permits to use either flow sensors or flow estimators. The solution chosen was the esti...The main requirement of a vector controller is knowing the magnitude and position of the rotating flow in the rotor. This feature permits to use either flow sensors or flow estimators. The solution chosen was the estimation of rotor flux with the hybrid neuro-fuzzy system. The motor characteristics are: 3.75 kW (5 HP), two pole-pair, operate at 60 Hz and air-gap length 0.2 mm. The ANFIS (adaptive neuro-fuzzy inference system) was used to tune the membership functions in fuzzy system. The hybrid estimator aims at compensating possible parametric variations of the machine caused by agents, such as temperature or nucleus saturation. The simulated results have shown good performance.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No. 59908001)Multidiscipline Scientific Research Foundation of Harbin Institute of Technology(Grant No. HIT. MD200030)
文摘Length and concise structure of fuzzy logic reasoning program and its real-time reasoning characteris-tic have their effect on the performance of a digital single-chip fuzzy controller. The control effect of a digitalfuzzy controller based on looking up fuzzy control responding table is only relative to the table and not relative tothe fuzzy control rules in the practical control process. Aiming at above problem and having combined fuzzy log-ic reasoning with digital operational characteristics of a single-chip microcomputer, functioning-fuzzy-subset in-ference (FFSI) in binary, in which triangle membership functions of error and error-in-change are all represen-ted in binary and singleton membership functions of control variable is binary too, has been introduced. The cir-cuit principle plans of a single-chip fuzzy controller have been introduced for development of its hardware, andthe primary program structure, fuzzy logic reasoning subroutine, serial communication subroutine with PC andreliability design of the fuzzy controller are all discussed in detail. The control of indoor temperature by a fuzzycontroller has been conducted using a testing-room thermodynamic system. Research results show that the FFSIin binary can exercise a concise fuzzy control in a single-chip fuzzy controller, and the fuzzy controller is there-fore reliable and possesses a high performance-price ratio.
基金Project(2013AA06A411)supported by the National High Technology Research and Development Program of ChinaProject(CXZZ14_1374)supported by the Graduate Education Innovation Program of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter(KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system(FIS), and the fuzzy adaptive Kalman filter(FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods.
文摘This paper presents the construction of a pneumatic active suspension system for a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is composed of fuzzy and disturbance controls, and the active control force is constructed by actuating a pneumatic actuator. A phase lead-lag compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension improves much the vibration suppression of the car model.
文摘The proposed controller incorporates FL (fuzzy logic) algorithm with ANN (artificial neural network). ANFIS replaces the conventional PI controller, tuning the fuzzy inference system with a hybrid learning algorithm. A tuning method is proposed for training of the neuro-fuzzy controller. The best rule base and the best training algorithm chosen produced high performance in the ANFIS controller. Simulation was done on Matlab Ver. 2010a. A case study was chopper-fed DC motor drive, in continuous and discrete modes. Satisfactory results show the ANFIS controller is able to control dynamic highly-nonlinear systems. Tuning it further improved the results.
文摘This paper presents a fuzzy tuning system for real-time industrial PID (proportional-integral-derivative) controllers. The algorithm set the proportional gain, integral time and derivative time of a classical PID structure according to the set point, error and error derivative of the process, respectively. The tuning of the PID controller is based on a fuzzy inference machine. The set of rules of the fuzzy inference machine was obtained by experts engineering. The system is tested in an austempering process but can be applied in any industrial plant. Besides, an analysis between the response of the process with a PID controller and the system of fuzzy auto-tuning for P1D proposed was made.
文摘The main requirement of a vector controller is knowing the magnitude and position of the rotating flow in the rotor. This feature permits to use either flow sensors or flow estimators. The solution chosen was the estimation of rotor flux with the hybrid neuro-fuzzy system. The motor characteristics are: 3.75 kW (5 HP), two pole-pair, operate at 60 Hz and air-gap length 0.2 mm. The ANFIS (adaptive neuro-fuzzy inference system) was used to tune the membership functions in fuzzy system. The hybrid estimator aims at compensating possible parametric variations of the machine caused by agents, such as temperature or nucleus saturation. The simulated results have shown good performance.