期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
幂模糊数方程和二次模糊方程的结构元求解方法 被引量:2
1
作者 孙旭东 郭嗣琮 《模糊系统与数学》 CSCD 北大核心 2009年第5期79-85,共7页
定义了幂模糊数和幂模糊数方程,基于结构元方法研究了幂模糊数运算和幂模糊数方程的求解,给出了隶属函数的表达式。同时,利用区间[-1,1]上的单调函数将二次模糊方程的求解问题转化为经典参数方程组的求解问题,给出了二次模糊方程解存在... 定义了幂模糊数和幂模糊数方程,基于结构元方法研究了幂模糊数运算和幂模糊数方程的求解,给出了隶属函数的表达式。同时,利用区间[-1,1]上的单调函数将二次模糊方程的求解问题转化为经典参数方程组的求解问题,给出了二次模糊方程解存在的充要条件,并辅以数值例子。 展开更多
关键词 模糊数方程 二次模糊方程 模糊结构元方法
下载PDF
三角模糊数方程的简便求解
2
作者 肖光灿 雷国雨 《西南科技大学学报》 CAS 2003年第4期72-74,共3页
在引入模糊数概念的基础上,给出了三角模糊数方程的简便求解方法。
关键词 三角模糊数方程 分解定理 模糊
下载PDF
模糊数的四则运算性质及其线性方程 被引量:12
3
作者 张兴芳 张风霞 孟广武 《模糊系统与数学》 CSCD 北大核心 2005年第1期93-99,共7页
讨论模糊数的加、减、乘、除的运算性质,提出模糊数线性方程的概念,并给出这种方程的一种解法。
关键词 模糊 模糊的四则运算 模糊线性方程
下载PDF
模糊数线性方程组
4
作者 周相泉 宋颖 +1 位作者 张风霞 张兴芳 《河北大学学报(自然科学版)》 CAS 北大核心 2005年第4期343-347,共5页
文献[2,3]提出了区间数线性组,模糊数线性方程的新概念及其解法,文献[4]给出了模糊数简化的运算法则,本文在此基础上提出了模糊数线性方程组的新概念,并给出了它的一种解法.
关键词 区间 区间线性方程 模糊 模糊线性方程
下载PDF
模糊数线性方程组解的概念与性质
5
作者 李香玲 张建梅 《河北师范大学学报(自然科学版)》 CAS 北大核心 2008年第5期581-584,共4页
介绍了有关的研究背景,说明模糊数矩阵方程组■=■■+与(■-■)■=的等价性.对模糊数线性方程组当系数矩阵为方的且非奇异时,给出方程组的6种解的形式,并说明其中5种具有一致性.当系数矩阵行列任意时,借助广义逆给出了解的定义,证... 介绍了有关的研究背景,说明模糊数矩阵方程组■=■■+与(■-■)■=的等价性.对模糊数线性方程组当系数矩阵为方的且非奇异时,给出方程组的6种解的形式,并说明其中5种具有一致性.当系数矩阵行列任意时,借助广义逆给出了解的定义,证明了此定义的合理性,并验证了此解与前人给出的解是一致的.最后给出最小范数解、最小二乘解和最小范数最小二乘解的定义形式. 展开更多
关键词 模糊线性方程 广义逆 奇异方阵
下载PDF
模糊数的相等、同一与等式限定运算 被引量:13
6
作者 郭嗣琮 刘海涛 《模糊系统与数学》 CSCD 北大核心 2008年第6期76-82,共7页
讨论了在模糊数运算中相等与同一的区别,在Klir的模糊数限定运算基础上提出了模糊数的等式限定运算以及等式限定运算的结构元表示方法,解决了传统模糊数运算的不可逆问题。通过模糊数的结构元表示方法,将其等式限定运算转换为两个同序... 讨论了在模糊数运算中相等与同一的区别,在Klir的模糊数限定运算基础上提出了模糊数的等式限定运算以及等式限定运算的结构元表示方法,解决了传统模糊数运算的不可逆问题。通过模糊数的结构元表示方法,将其等式限定运算转换为两个同序单调函数的运算,这不仅仅给出等式限定运算的可操作形式,同时对于求解模糊数方程也给出了具体的计算方法。 展开更多
关键词 模糊 同一性 广义限定算子 模糊数方程
下载PDF
模糊限定微分方程及解的表达形式 被引量:2
7
作者 郭嗣琮 王磊 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2004年第4期553-555,共3页
基于表现定理给出了一种新的模糊微分方程的定义,这种方程使得在传统意义下方程无解变得可解,并给出了方程解析解,同时也讨论了模糊限定微分方程定解问题的可表示性,得到了方程解可表示的判定条件。丰富了模糊微分方程理论研究的内容,... 基于表现定理给出了一种新的模糊微分方程的定义,这种方程使得在传统意义下方程无解变得可解,并给出了方程解析解,同时也讨论了模糊限定微分方程定解问题的可表示性,得到了方程解可表示的判定条件。丰富了模糊微分方程理论研究的内容,为模糊微分方程的实际应用开辟了一个新的途径,更加完善了模糊分析研究的体系结构. 展开更多
关键词 模糊:模糊值函:模糊限定微分方程
下载PDF
Estimation of Non-point Source Pollution Loads Under Uncertain Information 被引量:4
8
作者 LI Ruzhong 《Chinese Geographical Science》 SCIE CSCD 2008年第4期348-355,共8页
Many kinds of uncertainties are involved, such as random, fuzzy, grey, unascertained property and so on, in soil erosion process. To exactly predict the non-point source pollution loads, some uncertainties should be t... Many kinds of uncertainties are involved, such as random, fuzzy, grey, unascertained property and so on, in soil erosion process. To exactly predict the non-point source pollution loads, some uncertainties should be taken into consideration. Aiming at the deficiency of present blind number theory being helpless for fuzziness, a novel blind number, i.e. extended-blind number, was introduced by substituting a set of triangular fuzzy numbers (TFNs), expressed as a-cuts, for interval values in present blind number, and the expected value of extended-blind number was also brought forward by referring to the current blind number theory. On the basis of denoting the parameters of Uni- versal Soil Loss Equation (USLE) as extended-blind parameters, a novel USLE model was established for quantitatively evaluating soil erosion loss and non-point source pollution loads. As a case, the uncertain USLE was employed for predicting the soil erosion loss and non-point source pollution loads of absorbed nitrogen and phosphorus in a dis- trict in the Hangbu-Fengle River basin, in the upstream of Chaohu Lake watershed. The results show that it is feasible in theory to extend blind number into fuzzy environment and reliable on conclusion to apply extended-blind number theory for predicting non-point source pollution loads. 展开更多
关键词 non-point source pollution Universal Soil Loss Equation (USLE) triangular fuzzy number (TFN) blind number
下载PDF
Solution and Application of the Matrix Equation Ax=b
9
作者 孙建平 张艳娥 王熙照 《Chinese Quarterly Journal of Mathematics》 CSCD 1999年第1期16-21, ,共6页
In this paper,we first give the solution concept of the fuzzy matrix equation =. Secondly,we discuss the property of the solution and give the method of solving the fuzzy matrix equation A=. Finally,we present an appl... In this paper,we first give the solution concept of the fuzzy matrix equation =. Secondly,we discuss the property of the solution and give the method of solving the fuzzy matrix equation A=. Finally,we present an application of solving fuzzy matrix equation A= to the fuzzy linear regression analysis,establish a new model of fuzzy linear regression,and introduce a new method of estimating parameters. 展开更多
关键词 fuzzy number fuzzy matrix equation fuzzy linear regression analysis
下载PDF
A Mathod to Solve Systems of Fuzzy Linear Equations
10
作者 张艳娥 孙建平 王熙照 《Chinese Quarterly Journal of Mathematics》 CSCD 1998年第4期106-110, ,共5页
Many systems of fuzzy linear equations do not have solutions when the solution concept is based on α cuts and interval arithmetic. In this paper,we establish the relations between the systems of fuzzy linear equation... Many systems of fuzzy linear equations do not have solutions when the solution concept is based on α cuts and interval arithmetic. In this paper,we establish the relations between the systems of fuzzy linear equations and the possibilistic linear programming problems and present an alternative method of solving the systems of fuzzy linear equations. 展开更多
关键词 fuzzy number systems of fuzzy linear equations
下载PDF
Generalized Maximum Fuzzy Entropy Methods with Applications on Wind Speed Data
11
作者 Aladdin Shamilov Sevil Senturk Nihal Yilmaz 《Journal of Mathematics and System Science》 2016年第1期46-52,共7页
This study is connected with new Generalized Maximum Fuzzy Entropy Methods (GMax(F)EntM) in the form of MinMax(F)EntM and MaxMax(F)EntM belonging to us. These methods are based on primary maximizing Max(F)En... This study is connected with new Generalized Maximum Fuzzy Entropy Methods (GMax(F)EntM) in the form of MinMax(F)EntM and MaxMax(F)EntM belonging to us. These methods are based on primary maximizing Max(F)Ent measure for fixed moment vector function in order to obtain the special functional with maximum values of Max(F)Ent measure and secondary optimization of mentioned functional with respect to moment vector functions. Distributions, in other words sets of successive values of estimated membership function closest to (furthest from) the given membership function in the sense of Max(F)Ent measure, obtained by mentioned methods are defined as (MinMax(F)Ent)m which is closest to a given membership function and (MaxMax(F)Ent)m which is furthest from a given membership function. The aim of this study consists of applying MinMax(F)EntM and MaxMax(F)EntM on given wind speed data. Obtained results are realized by using MATLAB programme. The performances of distributions (MinMax(F)En0m and (MaxMax(F)Ent)m generated by using Generalized Maximum Fuzzy Entropy Methods are established by Chi-Square, Root Mean Square Error criterias and Max(F)Ent measure. 展开更多
关键词 Maximum fuzzy entropy measure Generalized maximum fuzzy entropy methods Moment vector functions Membership function.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部