These problems of nonlinearity, fuzziness and few labeled data were rarely considered in traditional remote sensing image classification. A semi-supervised kernel fuzzy C-means (SSKFCM) algorithm is proposed to over...These problems of nonlinearity, fuzziness and few labeled data were rarely considered in traditional remote sensing image classification. A semi-supervised kernel fuzzy C-means (SSKFCM) algorithm is proposed to overcome these disadvantages of remote sensing image classification in this paper. The SSKFCM algorithm is achieved by introducing a kernel method and semi-supervised learning technique into the standard fuzzy C-means (FCM) algorithm. A set of Beijing-1 micro-satellite's multispectral images are adopted to be classified by several algorithms, such as FCM, kernel FCM (KFCM), semi-supervised FCM (SSFCM) and SSKFCM. The classification results are estimated by corresponding indexes. The results indicate that the SSKFCM algorithm significantly improves the classification accuracy of remote sensing images compared with the others.展开更多
文摘针对核模糊C-均值算法(kernel fuzzy C-means,KFCM)随机选择初始聚类中心而不能获得全局最优且在聚类中心较近或重合时易产生一致性聚类等问题,提出一种改进算法。改进算法在原目标函数中引入中心极大化约束项来调控簇间分离度,从而避免算法出现一致性聚类结果。利用磷虾群算法对基于新目标函数的KFCM算法进行优化,使算法不再依赖初始聚类中心,提高算法的稳定性。基于距离最大最小原则产生多组较优的聚类中心作为初始磷虾群体并在算法迭代过程中融合一种新的精英保留策略,从而确保算法收敛到全局极值;通过对个体随机扩散活动进行分段式Logistic混沌扰动,提高算法全局寻优能力。使用KDD Cup 99入侵检测数据进行仿真实验表明,改进算法具有更好的检测性能,解决了传统的聚类算法在入侵检测中稳定性差、检测准确率低的问题。
基金Supported by the National High Technology Research and Development Programme (No.2007AA12Z227) and the National Natural Science Foundation of China (No.40701146).
文摘These problems of nonlinearity, fuzziness and few labeled data were rarely considered in traditional remote sensing image classification. A semi-supervised kernel fuzzy C-means (SSKFCM) algorithm is proposed to overcome these disadvantages of remote sensing image classification in this paper. The SSKFCM algorithm is achieved by introducing a kernel method and semi-supervised learning technique into the standard fuzzy C-means (FCM) algorithm. A set of Beijing-1 micro-satellite's multispectral images are adopted to be classified by several algorithms, such as FCM, kernel FCM (KFCM), semi-supervised FCM (SSFCM) and SSKFCM. The classification results are estimated by corresponding indexes. The results indicate that the SSKFCM algorithm significantly improves the classification accuracy of remote sensing images compared with the others.