期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
基于模糊核C-均值聚类分析的HRRP识别 被引量:3
1
作者 单凯晶 肖怀铁 朱俊 《电光与控制》 北大核心 2010年第5期42-45,共4页
由于雷达目标及其所处环境的复杂性,导致目标之间的关系往往是非线性的,因此,基于核方法的模式识别方法被广泛应用于雷达目标识别中。在对模糊核C-均值聚类算法深入研究的基础上,提出一种基于模糊核C-均值聚类的高分辨距离像识别算法。... 由于雷达目标及其所处环境的复杂性,导致目标之间的关系往往是非线性的,因此,基于核方法的模式识别方法被广泛应用于雷达目标识别中。在对模糊核C-均值聚类算法深入研究的基础上,提出一种基于模糊核C-均值聚类的高分辨距离像识别算法。该算法针对特征提取后一维距离像数据的特点,采用组合核函数以降低由于数据属性数值过大造成的权重过大对识别效果的影响;同时,算法可以在训练过程中通过有效性函数自适应地确定最佳聚类数目。仿真实验结果表明,基于组合核函数的识别算法同基于传统的高斯核的算法都能有效识别雷达目标,但前者具有更高的目标识别率。 展开更多
关键词 模糊核c-均值聚类算法 一维距离像 特征提取 有效性函数 函数
下载PDF
基于模糊核加权C-均值聚类的高光谱图像分类 被引量:19
2
作者 赵春晖 齐滨 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第9期2016-2021,共6页
高光谱图像分类是高光谱数据分析的重要研究内容之一。模糊C-均值聚类算法因其算法简单、收敛速度快等优点受到广泛的关注。由于高光谱数据的维数较高,其光谱波段的非线性特性使得传统模糊C-均值聚类算法无法在原始空间得到较好的聚类... 高光谱图像分类是高光谱数据分析的重要研究内容之一。模糊C-均值聚类算法因其算法简单、收敛速度快等优点受到广泛的关注。由于高光谱数据的维数较高,其光谱波段的非线性特性使得传统模糊C-均值聚类算法无法在原始空间得到较好的聚类结果。另外,模糊C-均值聚类算法在计算聚类中心时,仅使用了各样本对聚类中心的隶属度,忽略了样本之间固有存在的空间分布特征。为此提出了模糊核加权C-均值聚类算法,在计算模糊核聚类中心时,根据样本的空间分布特征,为每个样本分配不同的权值,使得每个核聚类中心随着样本的不同而各有不同。标准数据和实际高光谱数据的实验结果均表明,相比较传统模糊C-均值均聚类算法,模糊核加权C-均值聚类算法在总体分类精度上有较大的提高。 展开更多
关键词 分析 模糊核c-均值聚类 非参数加权特征提取 样本空间分布
下载PDF
基于连续域混合蚁群优化的核模糊C-均值聚类算法研究 被引量:5
3
作者 郭小芳 李锋 +1 位作者 宋晓宁 王卫东 《模式识别与人工智能》 EI CSCD 北大核心 2014年第9期841-846,共6页
为进一步提高核模糊C-均值聚类算法的聚类性能,提出基于连续域混合蚁群优化的核模糊C-均值聚类算法(KFCM-HACO),使用HACO对KFCM算法的内核函数参数值和聚类中心进行优化,克服传统算法弊端,使核模糊C-均值聚类算法的目标函数最小化,加快... 为进一步提高核模糊C-均值聚类算法的聚类性能,提出基于连续域混合蚁群优化的核模糊C-均值聚类算法(KFCM-HACO),使用HACO对KFCM算法的内核函数参数值和聚类中心进行优化,克服传统算法弊端,使核模糊C-均值聚类算法的目标函数最小化,加快算法的收敛速度.该优化算法在UCI数据集上的仿真实验及结果比较表明,KFCM-HACO算法的聚类性能优于传统的聚类算法,提高了聚类的准确性. 展开更多
关键词 分析 模糊c-均值 混合蚁群优化 连续概率密度函数
下载PDF
基于粒子群优化的核模糊属性c-均值聚类算法
4
作者 刘进 《广西师范学院学报(自然科学版)》 2010年第4期86-90,共5页
为克服核模糊属性c-均值聚类算法易陷入局部最优解的缺点,提出一种新的基于粒子群优化的核模糊属性c-均值聚类算法.该算法根据核模糊属性c-均值聚类准则设计适应度函数,利用粒子群优化算法对聚类中心进行优化,在粒子迭代进化过程中采用... 为克服核模糊属性c-均值聚类算法易陷入局部最优解的缺点,提出一种新的基于粒子群优化的核模糊属性c-均值聚类算法.该算法根据核模糊属性c-均值聚类准则设计适应度函数,利用粒子群优化算法对聚类中心进行优化,在粒子迭代进化过程中采用动态调整学习因子,提高算法的优化性能.实验表明,本文算法优于单一使用核模糊属性c-均值聚类算法和基于粒子群优化的核模糊c-均值聚类算法,也优于目前常见的典型聚类算法. 展开更多
关键词 粒子群优化 c-均值 稳态函数 模糊属性c-均值
下载PDF
基于核模糊c-均值聚类与阈值分割的SAR影像分割算法 被引量:1
5
作者 邱双双 《科技创新与应用》 2014年第35期15-15,共1页
由于SAR影像存在强烈的相干斑点噪声,传统的方法分割方法存在缺陷。文章在SAR影像分割研究中引入模糊聚类分析,设计了基于核模糊c-均值聚类与阈值分割结合的SAR影像分割算法,对SAR影像实现分割实验,通过实验分割结果的分析,证明了算法... 由于SAR影像存在强烈的相干斑点噪声,传统的方法分割方法存在缺陷。文章在SAR影像分割研究中引入模糊聚类分析,设计了基于核模糊c-均值聚类与阈值分割结合的SAR影像分割算法,对SAR影像实现分割实验,通过实验分割结果的分析,证明了算法的可靠性。 展开更多
关键词 SAR影像分割 多项式模糊c-均值 阈值分割
下载PDF
基于自适应正则化的核模糊C-均值聚类图像分割
6
作者 袁健 肖化 《电子技术与软件工程》 2017年第18期84-84,共1页
模糊聚类是将模糊集的概念应用到传统聚类分析中,让数据集的对象在分组中的隶属用隶属函数来确定,隶属度函数更好地描述边缘像素亦此亦彼得特点,对象在各分组中的隶属度为连续区间[0,1]之间的某个值,以不同程度隶属于多个簇,而非确定硬... 模糊聚类是将模糊集的概念应用到传统聚类分析中,让数据集的对象在分组中的隶属用隶属函数来确定,隶属度函数更好地描述边缘像素亦此亦彼得特点,对象在各分组中的隶属度为连续区间[0,1]之间的某个值,以不同程度隶属于多个簇,而非确定硬聚类中的0或1的二值逻辑。模糊C-均值聚类算法是模糊聚类中的一种经典算法,如果样本空间是非线性可聚的,该聚类不能效果就不理想。而核模糊C-均值聚类利用特征映射很好解决了这个问题。最后用正则化参数来提高分割的鲁棒性和提高图像的细节。提出了加权图像,并采用高斯径向基函数。 展开更多
关键词 模糊 模糊c-均值 自适应正则化
下载PDF
基于核模糊聚类的变分水平集医学图像分割方法 被引量:10
7
作者 刘雅婧 宋余庆 +1 位作者 廖定安 夏倩倩 《计算机应用研究》 CSCD 北大核心 2013年第11期3510-3513,共4页
针对现有无须重新初始化的变分水平集分割模型,存在对边缘模糊、对比度差等图像不是很敏感、分割效果不理想的问题,提出了一种基于核模糊聚类的变分水平集医学图像分割方法。将原始图像进行核模糊C-均值聚类,把得到的聚类结果带入初始... 针对现有无须重新初始化的变分水平集分割模型,存在对边缘模糊、对比度差等图像不是很敏感、分割效果不理想的问题,提出了一种基于核模糊聚类的变分水平集医学图像分割方法。将原始图像进行核模糊C-均值聚类,把得到的聚类结果带入初始化水平集函数得到初始轮廓,最后利用李模型的分割方法实现最终的图像分割。实验结果表明,该方法具有良好的分割质量,适应性强,同时可减少迭代次数。 展开更多
关键词 模糊c-均值算法 水平集 变分水平集 李模型 图像分割
下载PDF
基于NSCT和KFCM聚类的图像边缘检测方法 被引量:3
8
作者 吴一全 朱丽 李立 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第5期59-65,共7页
为进一步提高现有图像边缘检测方法的性能,提出了一种基于非下采样Contourlet变换(NSCT)和核模糊c-均值(KFCM)聚类的图像边缘检测方法.首先通过NSCT将原始图像分解成低频分量和高频分量;然后对含噪声较少的低频分量提取边缘信息,并采用K... 为进一步提高现有图像边缘检测方法的性能,提出了一种基于非下采样Contourlet变换(NSCT)和核模糊c-均值(KFCM)聚类的图像边缘检测方法.首先通过NSCT将原始图像分解成低频分量和高频分量;然后对含噪声较少的低频分量提取边缘信息,并采用KFCM聚类算法进行聚类得到低频边缘图像,以提高定位精度,而对于边缘细节信息较多的高频分量各个子带,通过模极大值检测边缘以减少伪边缘,丰富图像细节;最后对低频和高频图像边缘进行融合得到完整的边缘.实验结果表明,相比于Canny方法、边缘检测算子与模糊聚类结合的方法、边缘信息与混沌粒子群优化的模糊聚类结合的方法、NSCT域模极大值方法,文中方法具有更好的边缘检测效果,边缘定位准确、完整、连续、细节丰富. 展开更多
关键词 图像处理 边缘检测 非下采样CONTOURLET变换 模糊c-均值 模极大值
下载PDF
一种基于KFCM的SVM遥感图像机场目标分类算法
9
作者 刘峰 张立民 张瑞峰 《海军航空工程学院学报》 2013年第2期161-166,共6页
在遥感图像机场目标分类方面,支持向量机(SVM)有着广泛的应用,但由于样本不平衡问题以及不确定性数据的存在,传统SVM算法的分类精度与效果还无法令人满意。为提高传统SVM分类器的性能,文章将建立在模糊理论基础上的模糊核C-均值聚类算法... 在遥感图像机场目标分类方面,支持向量机(SVM)有着广泛的应用,但由于样本不平衡问题以及不确定性数据的存在,传统SVM算法的分类精度与效果还无法令人满意。为提高传统SVM分类器的性能,文章将建立在模糊理论基础上的模糊核C-均值聚类算法(KFCM)用于处理遥感数据的不确定性问题,并通过聚类分析后的目标子图,剔除非目标样本的同时保留了目标样本,较好地解决了样本不平衡问题。将基于KFCM的SVM分类算法用于遥感图像机场目标的分类,实验结果和性能分析表明该算法分类性能优于传统SVM算法。 展开更多
关键词 目标分算法 支持向量机 模糊核c-均值聚类算法 遥感图像
下载PDF
联合改进核FCM与智能优化SVR的WSNs链路质量预测 被引量:3
10
作者 刘洲洲 李士宁 +1 位作者 张筱 郭文强 《电子学报》 EI CAS CSCD 北大核心 2018年第1期90-97,共8页
为提高无线传感器网络(WSNs)链路质量预测精度和降低噪声影响,提出了一种联合改进核FCM与智能优化SVR(improved kernel furry c-means and intelligent support vector regression,IKFCM-ISVR)的WSNs链路质量预测方案.首先将基于紧致度... 为提高无线传感器网络(WSNs)链路质量预测精度和降低噪声影响,提出了一种联合改进核FCM与智能优化SVR(improved kernel furry c-means and intelligent support vector regression,IKFCM-ISVR)的WSNs链路质量预测方案.首先将基于紧致度和离散度的有效性指数引入核FCM方法,实现样本集聚类个数自动划分;然后采用改进核FCM方法对链路质量样本数据进行处理,获得样本聚类隶属度;在此基础上,构建群居蜘蛛优化SVR预测模型,采用基于"动态折射"学习机制的群集蜘蛛对模型参数进行优化,得到不同聚类最佳SVR参数组合;最后采用IKFCM-ISVR算法对不同实验场景下的WSNs链路数据进行预测评估.仿真结果表明,同其它预测算法相比,该算法预测精度提高了36.8~68.4%. 展开更多
关键词 链路质量预测 模糊c-均值 支持向量回归(SVR) 群居蜘蛛优化
下载PDF
分割多发性硬化症白质病灶的新方法 被引量:1
11
作者 相艳 贺建峰 +2 位作者 马磊 易三莉 徐家萍 《计算机应用》 CSCD 北大核心 2013年第6期1737-1738,1741,共3页
多发性硬化症(MS)是一种慢性的中枢神经系统疾病,其病灶可由常规脑部核磁共振成像(cMRI)进行检测。为提高图像处理的效率,提出了一种自动分割cMRI图像中的MS白质病灶(WML)的新方法。首先将模糊核聚类(KFCM)用于预处理后的T1加权像,得到... 多发性硬化症(MS)是一种慢性的中枢神经系统疾病,其病灶可由常规脑部核磁共振成像(cMRI)进行检测。为提高图像处理的效率,提出了一种自动分割cMRI图像中的MS白质病灶(WML)的新方法。首先将模糊核聚类(KFCM)用于预处理后的T1加权像,得到白质图像;然后利用一个种子点的区域生长处理白质图像,提取出一个二值模板。该模板与对应的T2加权像进行乘积,得到一幅仅包含白质、病灶及背景的图像;最后再次利用KFCM分割图像,得到病灶的核心部分。实验结果表明,所提出的方法能快速、有效地分割出低噪声仿真图像中的WML,且Dice相似性系数平均值在80%以上。 展开更多
关键词 多发性硬化症 模糊核c-均值聚类 常规磁共振成像 分割 白质
下载PDF
基于BEMD和灰度共生矩阵的图像特征提取 被引量:5
12
作者 龙鹏飞 贺亮 +1 位作者 吕回 张纯 《计算机工程与应用》 CSCD 北大核心 2009年第16期201-203,214,共4页
提出了一种新的图像特征提取方法,用二维经验模式分解将图像分解到固有模态函数(Intrinsic Mode Functions,IMF)域,即将图像分解成一系列的IMF和一个残差。并结合灰度共生矩阵对所提取到的各IMF图像和残差图像进行特征提取。为了验证算... 提出了一种新的图像特征提取方法,用二维经验模式分解将图像分解到固有模态函数(Intrinsic Mode Functions,IMF)域,即将图像分解成一系列的IMF和一个残差。并结合灰度共生矩阵对所提取到的各IMF图像和残差图像进行特征提取。为了验证算法的有效性,将其推广到像素级,对合成纹理和遥感图像进行了特征提取,并结合核模糊聚类(KFCM)算法对提取的特征向量做聚类分析,实现了图像的有效分割。 展开更多
关键词 二维经验模式分解 固有模态函数 灰度共生矩阵 合成纹理 遥感图像 基于模糊c-均值 图像分割
下载PDF
基于Boltzmann选择的人工蜂群KFCM算法 被引量:3
13
作者 赵小强 张守明 《兰州理工大学学报》 CAS 北大核心 2011年第1期71-75,共5页
为提高算法的搜索效率、减少搜索过程中陷入局部最优的现象,将人工蜂群算法用于核模糊C-均值聚类,但在聚类数比较大和维度较高时效果不太好,为此引入Boltzmann选择机制代替轮盘赌的选择方式,并采用小区间生成法使初始群体均匀化,使得该... 为提高算法的搜索效率、减少搜索过程中陷入局部最优的现象,将人工蜂群算法用于核模糊C-均值聚类,但在聚类数比较大和维度较高时效果不太好,为此引入Boltzmann选择机制代替轮盘赌的选择方式,并采用小区间生成法使初始群体均匀化,使得该算法的全局寻优能力更强,有效克服了KFCM算法易陷入局部最优的缺点.实验结果表明,对于聚类数比较大、维度较高的数据样本,新算法与FCM和KFCM聚类算法相比,聚类效果更准确,效率更高,迭代次数更少. 展开更多
关键词 数据挖掘 模糊c-均值 人工蜂群算法 Boltzmann选择机制
下载PDF
一种基于改进混合蛙跳的KFCM算法 被引量:2
14
作者 赵小强 刘悦婷 《计算机工程与应用》 CSCD 2013年第4期141-145,共5页
针对核模糊C-均值(KFCM)聚类算法存在易陷入局部极小值,对初始值敏感的缺点。将混合蛙跳算法(shuffled fro gleaping algorithm,SFLA)用于KFCM中,但在聚类数较大和维数较高时,聚类效果不理想,为此提出将自适应惯性权重引入混合蛙跳算法... 针对核模糊C-均值(KFCM)聚类算法存在易陷入局部极小值,对初始值敏感的缺点。将混合蛙跳算法(shuffled fro gleaping algorithm,SFLA)用于KFCM中,但在聚类数较大和维数较高时,聚类效果不理想,为此提出将自适应惯性权重引入混合蛙跳算法的更新策略中,再用改进后的混合蛙跳算法求得最优解作为KFCM算法的初始聚类中心,利用KFCM算法优化初始聚类中心,求得全局最优解,从而有效克服了KFCM算法的缺点。人造数据和经典数据集的实验结果表明,新算法与KFCM和FCM聚类算法相比,寻优能力更强,迭代次数更少,聚类效果更好。 展开更多
关键词 模糊c-均值 改进的混合蛙跳算法 分析 数据挖掘
下载PDF
一种鲁棒非平衡极速学习机算法 被引量:2
15
作者 孟凡荣 高春晓 刘兵 《计算机应用研究》 CSCD 北大核心 2014年第4期985-988,1004,共5页
极速学习机(ELM)算法只对平衡数据集分类较好,对于非平衡数据集,它通常偏向多数样本类,对于少数样本类性能较低。针对这一问题,提出了一种处理不平衡数据集分类的ELM模型(ELM-CIL),该模型按照代价敏感学习的原则为少数类样本赋予较大的... 极速学习机(ELM)算法只对平衡数据集分类较好,对于非平衡数据集,它通常偏向多数样本类,对于少数样本类性能较低。针对这一问题,提出了一种处理不平衡数据集分类的ELM模型(ELM-CIL),该模型按照代价敏感学习的原则为少数类样本赋予较大的惩罚系数,并引入模糊隶属度值减小了外围噪声点的影响。实验表明,提出的方法不仅对提高不平衡数据集中少数类的分类精度效果较明显,而且提高了对噪声的鲁棒性。 展开更多
关键词 极速学习机 不平衡数据集 基于的可能性模糊c-均值 神经网络
下载PDF
基于IKFCM与多模态SSO优化SVR的光伏发电短期预测 被引量:23
16
作者 黄予春 曹成涛 顾海 《电力系统保护与控制》 EI CSCD 北大核心 2018年第24期96-103,共8页
为提高短期光伏发电功率预测精度和降低气候等因素对预测结果的影响,提出了一种基于IKFCM与多模态SSO优化SVR的光伏发电功率短期预测方案。首先采用改进的KFCM(Improved KFCM, IKFCM)聚类方法对训练样本集进行处理,通过引入紧致离散聚... 为提高短期光伏发电功率预测精度和降低气候等因素对预测结果的影响,提出了一种基于IKFCM与多模态SSO优化SVR的光伏发电功率短期预测方案。首先采用改进的KFCM(Improved KFCM, IKFCM)聚类方法对训练样本集进行处理,通过引入紧致离散聚类有效性指数,在提高IKFCM聚类准确率的同时实现了自动划分训练样本集,有效降低了样本数据差异对预测性能的影响。然后构建与训练样本集分类一一对应的SVR预测模型,并采用多模态SSO优化(Multi-mode SSO, MSSO)算法对SVR模型参数进行优化,进而得到不同分类的最优SVR参数组合。最后,运用MSSO优化SVR模型对测试数据进行预测评估。仿真结果表明,该方案实现了不同天气下短期光伏发电功率准确预测,而且同其他预测算法相比预测精度提高了25.2%~37.8%。 展开更多
关键词 光伏发电功率 模糊c-均值 群居蜘蛛优化 支持向量回归(SVR)
下载PDF
Adaptive WNN aerodynamic modeling based on subset KPCA feature extraction 被引量:4
17
作者 孟月波 邹建华 +1 位作者 甘旭升 刘光辉 《Journal of Central South University》 SCIE EI CAS 2013年第4期931-941,共11页
In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel pr... In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel principal components analysis (SKPCA) feature extraction. Firstly, by fuzzy C-means clustering, some samples are selected from the training sample set to constitute a sample subset. Then, the obtained samples subset is used to execute SKPCA for extracting basic features of the training samples. Finally, using the extracted basic features, the AWNN aerodynamic model is established. The experimental results show that, in 50 times repetitive modeling, the modeling ability of the method proposed is better than that of other six methods. It only needs about half the modeling time of KPCA-AWNN under a close prediction accuracy, and can easily determine the model parameters. This enables it to be effective and feasible to construct the aerodynamic modeling for flight vehicles. 展开更多
关键词 WAVELET neural network fuzzy c-means clustering kernel principal components analysis feature extraction aerodynamic modeling
下载PDF
面向颜色深度图像手脸近距遮挡的手势识别 被引量:9
18
作者 刘斌 赵兴 +1 位作者 胡春海 万欣 《激光与光电子学进展》 CSCD 北大核心 2016年第6期134-143,共10页
手脸近距遮挡属于深度传感器应用中具有代表性的难点问题,针对该问题提出了一种综合利用颜色与深度信息的手势识别方法。采用核模糊C-均值聚类,对手脸遮挡图像进行粗分割和灰度增强,实现手脸分离。引入初始化水平集函数,解决聚类方法导... 手脸近距遮挡属于深度传感器应用中具有代表性的难点问题,针对该问题提出了一种综合利用颜色与深度信息的手势识别方法。采用核模糊C-均值聚类,对手脸遮挡图像进行粗分割和灰度增强,实现手脸分离。引入初始化水平集函数,解决聚类方法导致的手势区域像元缺失问题。利用基于深度信息的梯度方向直方图(HOG)特征对手势进行分类识别。通过采集不同人体手脸近距遮挡情形下的多种手势图像建立了样本数据库,进行了对比实验,实验结果验证了该方法的可行性和有效性。本文方法能有效分离近距遮挡的手和脸,提取得到相对完整的手势信息,深度HOG特征能够对手势空间信息进行精确描述,具有比传统形状特征更准确的识别效果。 展开更多
关键词 图像处理 手势识别 手脸近距遮挡 多相水平集 模糊c-均值 梯度方向直方图特征
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部