期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
新双连杆柔性臂机器人定位过程模糊滑模控制 被引量:1
1
作者 戴学丰 孙立宁 蔡鹤皋 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2004年第4期526-528,共3页
以宏微双重驱动的双连杆柔性臂机器人为背景,提出了一种新的关节角控制律设计方法,即基于刚性模态设计实现关节位置控制的滑模算法,再根据关节角误差信号和滑模函数变化趋势建立模糊推理表确定对滑模控制律的修正量。通过将控制律在完... 以宏微双重驱动的双连杆柔性臂机器人为背景,提出了一种新的关节角控制律设计方法,即基于刚性模态设计实现关节位置控制的滑模算法,再根据关节角误差信号和滑模函数变化趋势建立模糊推理表确定对滑模控制律的修正量。通过将控制律在完整的系统模型上进行计算机仿真表明,算法可以很好地实现关节角位置控制同时不引起大的振动。 展开更多
关键词 柔性臂机器人 滑模控制:模糊控制 位置控制
下载PDF
基于FSMC的SAPF应用于船舶电网谐波抑制技术的仿真研究
2
作者 李春华 戴跃伟 陈嘉鸿 《船舶工程》 北大核心 2015年第9期53-57,共5页
为避免强非线性负载导致的谐波污染对船舶电网可靠运行的危害,提出采用基于模糊滑模控制(FSMC)的并联型有源电力滤波器(SAPF)抑制船舶电网的谐波。在分析船舶电网谐波成分的基础上,采用改进的Ip-Iq法实现谐波电流的实时检测,并针对强非... 为避免强非线性负载导致的谐波污染对船舶电网可靠运行的危害,提出采用基于模糊滑模控制(FSMC)的并联型有源电力滤波器(SAPF)抑制船舶电网的谐波。在分析船舶电网谐波成分的基础上,采用改进的Ip-Iq法实现谐波电流的实时检测,并针对强非线性负载的瞬变特征,将模糊滑模控制理论引入到SAPF的电流跟踪控制,最终通过向电网注入补偿电流的方式实现对谐波电流的抑制。仿真结果表明,基于FSMC的SAPF技术对船舶电网的谐波抑制效果良好,使电网谐波电流达到相关谐波标准要求。 展开更多
关键词 船舶电网 谐波抑制 并联型有源电力滤波器 模糊滑模控制控制
下载PDF
Torsional vibration active control of hybrid construction machinery complex shafting 被引量:1
3
作者 胡琼 阳春华 +1 位作者 刘少军 郑皓 《Journal of Central South University》 SCIE EI CAS 2014年第9期3498-3503,共6页
Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce th... Due to the coaxial connection of engine, motor and pump, the dynamic characteristics of hybrid construction machinery are changed, which generates a new torsional vibration problem of multi-power sources. To reduce the torsional vibration of the hybrid construction machinery complex shafting, torsional vibration active control was proposed. The three-mass model of coaxial shafting of hybrid construction machinery was established. The PID control and the fuzzy sliding mode control were chosen to weaken torsional vibration by controlling the motor speed and torque. The simulation results show that the fuzzy sliding mode control has 12% overshoot of the PID control when the engine torque changes. The active control is effective and can realize smooth power switch. 展开更多
关键词 torsional vibration active control hybrid construction machinery electro-mechanical coupling fuzzy sliding modecontrol
下载PDF
Simulation and Design of Fuzzy Sliding-mode Controller for Ship Heading-tracking 被引量:3
4
作者 袁雷 吴汉松 《Journal of Marine Science and Application》 2011年第1期76-81,共6页
In considering the characteristic of a rudder,the maneuvers of a ship were described by an unmatched uncertain nonlinear mathematic model with unknown virtual control coefficient and parameter uncertainties.In order t... In considering the characteristic of a rudder,the maneuvers of a ship were described by an unmatched uncertain nonlinear mathematic model with unknown virtual control coefficient and parameter uncertainties.In order to solve the uncertainties in the ship heading control,specifically the controller singular and paramount re-estimation problem,a new multiple sliding-mode adaptive fuzzy control algorithm was proposed by combining Nussbaum gain technology,the approximation property of fuzzy logic systems,and a multiple sliding-mode control algorithm.Based on the Lyapunov function,it was proven in theory that the controller made all signals in the nonlinear system of unmatched uncertain ship motion uniformly bounded,with tracking errors converging to zero.Simulation results show that the demonstrated controller design can track a desired course fast and accurately.It also exhibits strong robustness peculiarity in relation to system uncertainties and disturbances. 展开更多
关键词 ship autopilot nonlinear system unmatched uncertainty multiple sliding mode control fuzzy control
下载PDF
A new robust fuzzy method for unmanned flying vehicle control 被引量:5
5
作者 Mojtaba Mirzaei Mohammad Eghtesad Mohammad Mahdi Alishahi 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2166-2182,共17页
A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles(UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. T... A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles(UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. The proposed control system combined great advantages of generalized indirect adaptive sliding mode control(IASMC) and fuzzy control for the UFVs. An on-line adaptive tuning algorithm based on Lyapunov function and Barbalat lemma was designed, thus the stability of the system can be guaranteed. The chattering phenomenon in the sliding mode control was reduced and the steady error was also alleviated. The numerical results, for an underactuated quadcopter and a high speed underwater vehicle as case studies, indicate that the presented adaptive design of fuzzy sliding mode controller performs robustly in the presence of sensor noise and external disturbances. In addition, online unknown parameter estimation of the UFVs, such as ground effect and planing force especially in the cases with the Gaussian sensor noise with zero mean and standard deviation of 0.5 m and 0.1 rad and external disturbances with amplitude of 0.1 m/s2 and frequency of 0.2 Hz, is one of the advantages of this method. These estimated parameters are then used in the controller to improve the trajectory tracking performance. 展开更多
关键词 adaptive fuzzy sliding-mode control unmanned flying vehicle control underactuated system Lyapunov stability high speed underwater vehicle
下载PDF
Fuzzy robust sliding mode control of a class of uncertain systems 被引量:6
6
作者 REN Li-tong 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2296-2304,共9页
Aiming at a class of systems under parameter perturbations and unknown external disturbances, a method of fuzzy robust sliding mode control was proposed. Firstly, an integral sliding mode surface containing state feed... Aiming at a class of systems under parameter perturbations and unknown external disturbances, a method of fuzzy robust sliding mode control was proposed. Firstly, an integral sliding mode surface containing state feedback item was designed based on robust H∞ control theory. The robust state feedback control was utilized to substitute for the equivalent control of the traditional sliding mode control. Thus the robustness of systems sliding mode motion was improved even the initial states were unknown. Furthermore, when the upper bound of disturbance was unknown, the switching control logic was difficult to design, and the drawbacks of chattering in sliding mode control should also be considered simultaneously. To solve the above-mentioned problems, the fuzzy nonlinear method was applied to approximate the switching control term. Based on the Lyapunov stability theory, the parameter adaptive law which could guarantee the system stability was devised. The proposed control strategy could reduce the system chattering effectively. And the control input would not switch sharply, which improved the practicality of the sliding mode controller. Finally, simulation was conducted on system with parameter perturbations and unknown external disturbances. The result shows that the proposed method could enhance the approaching motion performance effectively. The chattering phenomenon is weakened, and the system possesses stronger robustness against parameter perturbations and external disturbances. 展开更多
关键词 uncertain systems robust control fuzzy sliding mode control CHATTERING
下载PDF
Adaptive fuzzy integral sliding mode pressure control for cutter feeding system of trench cutter
7
作者 田启岩 魏建华 +1 位作者 方锦辉 国凯 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3302-3311,共10页
A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of ... A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of CFS is subjected to unknown load characteristics of rock or soil; in addition,the geological condition is time-varying.Due to the complex load characteristics of rock or soil,the feeding velocity of TC is related to geological conditions.What is worse,its dynamic model is subjected to uncertainties and its function is unknown.To deal with the particular characteristics of CFS,a novel adaptive fuzzy integral sliding mode control(AFISMC) was designed for feeding pressure control of CFS,which combines the robust characteristics of an integral sliding mode controller and the adaptive adjusting characteristics of an adaptive fuzzy controller.The AFISMC feeding pressure controller is synthesized using the backstepping technique.The stability of the overall closed-loop system consisting of the adaptive fuzzy inference system,integral sliding mode controller and the cutter feeding system is proved using Lyapunov theory.Experiments are conducted on a TC test bench with the AFISMC under different operating conditions.The experimental results demonstrate that the proposed AFISMC feeding pressure controller for CFS gives a superior and robust pressure tracking performance with maximum pressure tracking error within ?0.3 MPa. 展开更多
关键词 electro-hydraulic system cutter feeding system feeding pressure control adaptive fuzzy integral sliding mode control
下载PDF
Fuzzy-second order sliding mode control optimized by genetic algorithm applied in direct torque control of dual star induction motor
8
作者 Ghoulemallah BOUKHALFA Sebti BELKACEM +1 位作者 Abdesselem CHIKHI Moufid BOUHENTALA 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第12期3974-3985,共12页
The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parame... The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control(SOSMC) based on the super twisting algorithm(STA) combined with the fuzzy logic control(FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm(GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance. 展开更多
关键词 double star induction machine direct torque control fuzzy second order sliding mode control genetic algorithm biogeography based optimization algorithm
下载PDF
Fuzzy Sliding Mode Control for a Discrete Servo System
9
作者 王传江 孙秀娟 《Journal of Measurement Science and Instrumentation》 CAS 2011年第1期81-83,共3页
A discrete fuzzy sliding mode variable structure controller was studied and designed for a class of electro-hydraulic servo system by means of the combination of sliding mode control theory and fuzzy control theory. D... A discrete fuzzy sliding mode variable structure controller was studied and designed for a class of electro-hydraulic servo system by means of the combination of sliding mode control theory and fuzzy control theory. Designed based on the exponential reaching law, paratmter e of conventional sliding mode controller is the key factor of system chattering, and is ~onal to it as well. In view of this, fuzzy control theory was introduced into the design to ensure the real- time adjusting of parameter e. Sinmlation results show that the sys tem chattering is eliminated perfectly, and the dynamic performance of the control system is improved effectively. 展开更多
关键词 sliding mate control fuzzy control reaching law servo system
下载PDF
Energy-Saving Design for Hydraulic Tube Bender
10
作者 Jyh-Chyang Renn Chin-Yi Cheng Meng-HanLin 《Journal of Energy and Power Engineering》 2014年第3期414-422,共9页
Generally speaking, hydraulic control systems can be divided into two different driving concepts. The first one is the well-known hydraulic valve-controlled system and the second one is the pump-controlled system. The... Generally speaking, hydraulic control systems can be divided into two different driving concepts. The first one is the well-known hydraulic valve-controlled system and the second one is the pump-controlled system. The former possesses the feature of fast dynamic response. However, the poor energy-saving performance is its major fault. On the contrary, the hydraulic pump-controlled system has the significant advantage of energy-saving which meets the current demand in modem machine design. In this paper, the simulation analysis using MatLab/SimuLink and DSHplus software for a newly developed energy-saving hydraulic tube bender is conducted. Instead of the conventional fixed displacement hydraulic pump, the new hydraulic tube bender utilizes an internal gear pump with AC servomotor as its driving power source. In the new energy-saving hydraulic circuit, the use of conventional pressure relief valve and unloading valve are no longer necessary since the demanded flow-rate and pressure output can be precisely obtained by continuously changing the speed of the AC servomotor. In addition, two closed-loop control schemes using fuzzy sliding-mode controller are adopted and compared. To compare the energy-saving control systems, such as load-sensing control system, constant supply pressure control scheme and conventional hydraulic control scheme. Furthermore, the simulation results also show that the newly developed hydraulic tube bender can save up to 43% of energy consumption in a working cycle as compared to the conventional hydraulic tube bender. 展开更多
关键词 Hydraulic energy-saving pump-controlled system fluid power tube bender.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部