In order to overcome the wide-range load tracking and unknown disturbance issues of an ultra-supercritical boiler- turbine unit, a fuzzy disturbance rejection predictive control approach is proposed using the techniq...In order to overcome the wide-range load tracking and unknown disturbance issues of an ultra-supercritical boiler- turbine unit, a fuzzy disturbance rejection predictive control approach is proposed using the techniques of fuzzy scheduling, model predictive control and extended state observer. Local state-space models are established on the basis of nonlinearity analysis and subspace identification. To eiJiance thedisturbance rejection capability of the controller, a extended state observer is employed to estimate unnown disturbances and model mismatches. The disturbance estimation ennaced local predictive controllers ae subsequently devised based on the local models, the performance of which is further strengthened by incorporating the fuzzy scheduling technique. The simulation results verify the merits of the proposed strategy in achieving satisfactory wide-range load tracking ad disturbance rejection performance.展开更多
Aiming at a class of systems under parameter perturbations and unknown external disturbances, a method of fuzzy robust sliding mode control was proposed. Firstly, an integral sliding mode surface containing state feed...Aiming at a class of systems under parameter perturbations and unknown external disturbances, a method of fuzzy robust sliding mode control was proposed. Firstly, an integral sliding mode surface containing state feedback item was designed based on robust H∞ control theory. The robust state feedback control was utilized to substitute for the equivalent control of the traditional sliding mode control. Thus the robustness of systems sliding mode motion was improved even the initial states were unknown. Furthermore, when the upper bound of disturbance was unknown, the switching control logic was difficult to design, and the drawbacks of chattering in sliding mode control should also be considered simultaneously. To solve the above-mentioned problems, the fuzzy nonlinear method was applied to approximate the switching control term. Based on the Lyapunov stability theory, the parameter adaptive law which could guarantee the system stability was devised. The proposed control strategy could reduce the system chattering effectively. And the control input would not switch sharply, which improved the practicality of the sliding mode controller. Finally, simulation was conducted on system with parameter perturbations and unknown external disturbances. The result shows that the proposed method could enhance the approaching motion performance effectively. The chattering phenomenon is weakened, and the system possesses stronger robustness against parameter perturbations and external disturbances.展开更多
Two types of coaxial self-balancing robots(CSBR)were proposed,one can be used as a mobile robot platform for parts transporting in unmanned factory or as an inspector in dangerous areas,and the other can be used as a ...Two types of coaxial self-balancing robots(CSBR)were proposed,one can be used as a mobile robot platform for parts transporting in unmanned factory or as an inspector in dangerous areas,and the other can be used as a personal transporter ridden in cities.Mechanical designing and control structures as well as control strategies were described and compared in order to get a general way to develop such robots.A state feedback controller and a fuzzy controller were designed for the robot using DC servo motors and the robot using torque motors,respectively.The experiments indicate that the robots can realize various desired operations smoothly and agilely at the velocity of 0.6 m/s with an operator of 65 kg.Furthermore,the robustness of the controllers is revealed since these controllers can stabilize the robot even with unknown external disturbances.展开更多
A new method of using dynamic equalization technology to realize the maximum energy storage utilization was presented to overcome the influence of the disaccord among units of series super capacitor (SC) bank and en...A new method of using dynamic equalization technology to realize the maximum energy storage utilization was presented to overcome the influence of the disaccord among units of series super capacitor (SC) bank and ensure that the units could work safely. By considering in combination with the high specific power, low working voltage, wide voltage working range and noulinear external characteristics, we present constant duty ratio pulse frequency modulation mode and fuzzy control method based on state prediction in the active equalization circuit and accomplish the software and hardware design for the equalization system. The simulation analysis and experiment results of constant current muhi-cycle and variable current multi-cycle charge-discharge process verify the validity of the design.展开更多
基金The National Natural Science Foundation of China(No.51506029,51576041)the Natural Science Foundation of Jiangsu Province(No.BK20150631)China Postdoctoral Science Foundation
文摘In order to overcome the wide-range load tracking and unknown disturbance issues of an ultra-supercritical boiler- turbine unit, a fuzzy disturbance rejection predictive control approach is proposed using the techniques of fuzzy scheduling, model predictive control and extended state observer. Local state-space models are established on the basis of nonlinearity analysis and subspace identification. To eiJiance thedisturbance rejection capability of the controller, a extended state observer is employed to estimate unnown disturbances and model mismatches. The disturbance estimation ennaced local predictive controllers ae subsequently devised based on the local models, the performance of which is further strengthened by incorporating the fuzzy scheduling technique. The simulation results verify the merits of the proposed strategy in achieving satisfactory wide-range load tracking ad disturbance rejection performance.
基金Project(51476187)supported by the National Natural Science Foundation of China
文摘Aiming at a class of systems under parameter perturbations and unknown external disturbances, a method of fuzzy robust sliding mode control was proposed. Firstly, an integral sliding mode surface containing state feedback item was designed based on robust H∞ control theory. The robust state feedback control was utilized to substitute for the equivalent control of the traditional sliding mode control. Thus the robustness of systems sliding mode motion was improved even the initial states were unknown. Furthermore, when the upper bound of disturbance was unknown, the switching control logic was difficult to design, and the drawbacks of chattering in sliding mode control should also be considered simultaneously. To solve the above-mentioned problems, the fuzzy nonlinear method was applied to approximate the switching control term. Based on the Lyapunov stability theory, the parameter adaptive law which could guarantee the system stability was devised. The proposed control strategy could reduce the system chattering effectively. And the control input would not switch sharply, which improved the practicality of the sliding mode controller. Finally, simulation was conducted on system with parameter perturbations and unknown external disturbances. The result shows that the proposed method could enhance the approaching motion performance effectively. The chattering phenomenon is weakened, and the system possesses stronger robustness against parameter perturbations and external disturbances.
基金Project(61273344)supported by the National Natural Science Foundation of ChinaProject(SKLRS-2010-ZD-40)supported by the StateKey Laboratory of Robotics and Systems(HIT),China+1 种基金Project(2008AA04Z208)supported by the National Hi-tech Research and Development Program of ChinaProject(20121101110011)supported by PhD Program Foundation of Ministry of Education,China
文摘Two types of coaxial self-balancing robots(CSBR)were proposed,one can be used as a mobile robot platform for parts transporting in unmanned factory or as an inspector in dangerous areas,and the other can be used as a personal transporter ridden in cities.Mechanical designing and control structures as well as control strategies were described and compared in order to get a general way to develop such robots.A state feedback controller and a fuzzy controller were designed for the robot using DC servo motors and the robot using torque motors,respectively.The experiments indicate that the robots can realize various desired operations smoothly and agilely at the velocity of 0.6 m/s with an operator of 65 kg.Furthermore,the robustness of the controllers is revealed since these controllers can stabilize the robot even with unknown external disturbances.
基金the National High Technology Research and Development Programme of China(No.2002AA001028)the Tenth Five-year Industry Item of the Tackling Key Problem of Heilongjiang Province(No.CA02A201)
文摘A new method of using dynamic equalization technology to realize the maximum energy storage utilization was presented to overcome the influence of the disaccord among units of series super capacitor (SC) bank and ensure that the units could work safely. By considering in combination with the high specific power, low working voltage, wide voltage working range and noulinear external characteristics, we present constant duty ratio pulse frequency modulation mode and fuzzy control method based on state prediction in the active equalization circuit and accomplish the software and hardware design for the equalization system. The simulation analysis and experiment results of constant current muhi-cycle and variable current multi-cycle charge-discharge process verify the validity of the design.